Florida Results

For 8/20/2012

Executive Summary

On the afternoon of August 20th, 2012, Gravis Marketing conducted a survey of 728 likely voters in the state of Florida. The questions covered preference for a given presidential candidate, the Florida U.S. Senate Race between Connie Mack and Bill Nelson, and Governor Rick Scott's performance rating. The full list of questions are given on page 5. Overall, Romney and Obama remain in a statistical dead heat, with the August 20th poll giving Romney about a 3\% lead (48% to 45%), with a margin of error of about 3.8\%.

Analysis

How Does the V.P. affect the Likely Vote?

Romney recently announced his Vice Presidential pick, Congressman Paul Ryan. Is Ryan affecting the vote? Well, adding Ryan to the ticket increases Romney's lead from $48 \%-45 \%$ to $49 \%-45 \%$. What about adding Hilary Clinton to the V.P. part of the ticket - does she increase Obama's chances? No, actually adding Clinton to the ticket increases Romney's take by about half a percentage point and decreases Obama’s take by about a fifth of a percentage point.

Obama, Romney, or Other

Does Adding Libertarian Candidate Gary Johnson Help

 Out Obama?Presidential vote (Obama, Romney, Not Sure)?

The addition of Gary Johnson into the voting mix could
Other
Obama-Biden, Romney-Ryan; Obama-Clinton, Romney-Ryan

President (Obama-Biden, Romney-Ryan, Not sure) (copy)
Obama-Biden
Romney-Ryan
Not sure
materially affect the outcome of the election, with Johnson taking about 3% of the overall vote, with about 1.7% from Romney and 0.5% from Obama.

How Does the Presidential Election Breakdown by Religious Affiliation?

There chart dealing with the religious affiliation issue is on page 4. On the whole, Romney wins the two biggest groups - Catholics and Protestant Christians and Obama wins the non-affiliated and Jewish voters.

Breaking this down further by age group reveals that Romney generally wins the vote of the older religious voter, while Obama comes out ok among younger religious voters in certain categories. For instance, Obama wins all age groups among Roman Catholics, but because Romney wins the 50+ group, he wins the Catholic vote as a whole. On the other end of the spectrum, Romney wins all Protestant age groups, while Obama takes all the non-affiliation age groups.

How is Rick Scott Doing?
Overall, Rick Scott comes in with a 35\% approval rating and a 38% disapproval rating. The age and religious breakdown of the Rick Scott question is on page 3. Perhaps not surprisingly, Rick Scott has a higher approval than disapproval rating among all religious groups and exhibits the reverse among non-religiously affiliated respondents.

Conclusion

These brief discussions and graphical depictions only scratch the surface of all the cross tabulations available with the recent survey. A full list of all the questions posed is listed on page 5 and all cross tabulations follow this executive sum-

Gary Johnson Effect
 mary.

Florida Results
For 8/20/2012

Florida Results
For 8/20/2012

Presidential vote (Obama, Romney, Not Sure)? (bin)
\square obama
${ }^{\text {Romney }}$

Survey Questions

1. Are you a registered voter?
2. Do you plan on voting in the presidential election on November 6th?
3. Which party are either registered to vote or do you consider yourself a member of?
4. If the election were held today, would you vote for Obama, Romney, or not sure/other?
5. If the election were held today, would you vote for Obama, Romney, Libertarian Gary Johnson, or someone else/ unsure?
6. If the election were held today, would you vote for Obama-Biden, Romney-Ryan, or note sure?
7. If the election were held today, would you vote for Obama-Clinton, Romney-Ryan, or note sure?
8. If the election were held today, would you vote for Connie Mack or Bill Nelson?
9. How would you rate Rick Scott's job performance as Governor?
10. What's your race?
11. Do you consider yourself Hispanic or Latino?
12. What's your religious affiliation?
13. What's your age group? 18-29; 30-39; 40-49; 50+
14. What's your gender?

Crosstabs

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Are you registered to vote (1=yes; 2=no) * Gender (1=Male; 2=Female)	532	60.7\%	344	39.3\%	876	100.0\%
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely) * Gender (1=Male; 2=Female)	532	60.7\%	344	39.3\%	876	100.0\%
Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Gender (1=Male; 2=Female)	532	60.7\%	344	39.3\%	876	100.0\%
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Gender (1=Male; 2=Female)	532	60.7\%	344	39.3\%	876	100.0\%
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Gender (1=Male; 2=Female)	532	60.7\%	344	39.3\%	876	100.0\%
President (1=Obama- Biden; 2=Romney-Ryan; $3=$ Not sure) * Gender (1=Male; 2=Female)	532	60.7\%	344	39.3\%	876	100.0\%
President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure) * Gender (1=Male; 2=Female)	532	60.7\%	344	39.3\%	876	100.0\%
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Gender (1=Male; 2=Female)	532	60.7\%	344	39.3\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Gender (1=Male; 2=Female)	532	60.7\%	344	39.3\%	876	100.0\%
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Gender (1=Male; 2=Female)	532	60.7\%	344	39.3\%	876	100.0\%
Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Gender (1=Male; 2=Female)	532	60.7\%	344	39.3\%	876	100.0\%
$\begin{aligned} & \text { Age Group (1=18-29; } \\ & \text { 2=30-39; 3=40-49; 4=50+) } \\ & \text { * Gender (1=Male; } \\ & \text { 2=Female) } \end{aligned}$	532	60.7\%	344	39.3\%	876	100.0\%
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * Gender (1=Male; 2=Female)	532	60.7\%	344	39.3\%	876	100.0\%

Are you registered to vote (1=yes; 2=no) * Gender (1=Male; 2=Female)

Crosstab

		Gender (1=Male; 2=Female)		Total
		1	2	
Are you registered to vote	1	Count	226	306
(1=yes; 2=no)	\% of Total	42.5%	57.5%	100.0%
Total	Count	226	306	532
		\% of Total	42.5%	57.5%

Chi-Square Tests

	Value
Pearson Chi-Square	\cdot
N of Valid Cases	532

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval \quad Pearson's R	$\cdot{ }^{a}$
N of Valid Cases	532

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * Gender (1=Male; 2=Female)

Crosstab					
			Gender (1=Male; 2=Female)		Total
			1	2	
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	1	Count	223	297	520
		\% of Total	41.9\%	55.8\%	97.7\%
	2	Count	3	9	12
		\% of Total	0.6\%	1.7\%	2.3\%
Total		Count	226	306	532
		\% of Total	42.5\%	57.5\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	1.535^{a}	1	.215		
Continuity Correction $^{\text {b }}$.891	1	.345		
Likelihood Ratio	1.630	1	.202		
Fisher's Exact Test				.252	
Linear-by-Linear	1.533		1	.216	
Association					
N of Valid Cases	532				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 5.10.
b. Computed only for a 2×2 table

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.	
Interval by Interval	Pearson's R	.054	.039	1.239	$.216^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.054	.039	1.239	$.216^{\mathrm{c}}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Party (1=Democrat; 2=Republican; 3=Independent or minor party) * G ender (1=Male; 2=Female)

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	20.642^{a}	2	.000
Likelihood Ratio	20.787	2	.000
Linear-by-Linear	20.473	1	.000
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 40.36 .

Symmetric Measures

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Gender (1 =Male; 2=Female)

Crosstab

			Gender (1=Male; 2=Female)		Total
			1	2	
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	89	153	242
		\% of Total	16.7\%	28.8\%	45.5\%
	2	Count	126	139	265
		\% of Total	23.7\%	26.1\%	49.8\%
	3	Count	11	14	25
		\% of Total	2.1\%	2.6\%	4.7\%
Total		Count	226	306	532
		\% of Total	42.5\%	57.5\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.030^{a}	2	.049
Likelihood Ratio	6.052	2	.049
Linear-by-Linear	4.604	1	.032
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 10.62 .

Symmetric Measures

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Gen der (1=Male; 2=Female)

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	4.803^{a}	3	.187
Likelihood Ratio	4.805	3	.187
Linear-by-Linear	1.244	1	.265
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 6.37 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 048	. 043	-1.116	. $265{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 073	. 043	-1.690	. $092{ }^{\text {c }}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * Gender (1=Male; 2=Female)

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.641^{a}	2	.060
Likelihood Ratio	5.656	2	.059
Linear-by-Linear	1.976		1

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 11.05 .

Symmetric Measures

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * Gender (1=Male; 2=Female)

Crosstab

			Gender (1=Male; 2=Female)		Total
			1	2	
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure)	1	Count	94	150	244
		\% of Total	17.7\%	28.2\%	45.9\%
	2	Count	122	132	254
		\% of Total	22.9\%	24.8\%	47.7\%
	3	Count	10	24	34
		\% of Total	1.9\%	4.5\%	6.4\%
Total		Count	226	306	532
		\% of Total	42.5\%	57.5\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.142^{a}	2	.028
Likelihood Ratio	7.225	2	.027
Linear-by-Linear	.568	1	.451
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 14.44 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	${\text { Approx. } \mathrm{T}^{\mathrm{b}}}^{\text {Value }}$	Approx. Sig.	
Interval by Interval	Pearson's R	-.033	.043	-.754	$.451^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	-.049	.043	-1.130	$.259^{\text {C }}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Gender (1=M ale; 2=Female)

Crosstab

			Gender (1=Male; 2=Female)		Total
			1	2	
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	103	102	205
		\% of Total	19.4\%	19.2\%	38.5\%
	2	Count	97	147	244
		\% of Total	18.2\%	27.6\%	45.9\%
	3	Count	26	57	83
		\% of Total	4.9\%	10.7\%	15.6\%
Total		Count	226	306	532
		\% of Total	42.5\%	57.5\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	10.026^{a}	2	.007
Likelihood Ratio	10.112	2	.006
Linear-by-Linear	9.955	1	.002
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 35.26 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.	
Interval by Interval	Pearson's R	.137	.042	3.182	$.002^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.137	.043	3.189	$.002^{\mathrm{C}}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Gender (1=Male; 2=Female)

Crosstab

			Gender (1=Male; 2=Female)		Total
			1	2	
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count	98	92	190
		\% of Total	18.4\%	17.3\%	35.7\%
	2	Count	80	125	205
		\% of Total	15.0\%	23.5\%	38.5\%
	3	Count	48	89	137
		\% of Total	9.0\%	16.7\%	25.8\%
Total		Count	226	306	532
		\% of Total	42.5\%	57.5\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	10.546^{a}	2	.005
Likelihood Ratio	10.533	2	.005
Linear-by-Linear	9.592	1	.002
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 58.20 .

Symmetric Measures

			Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.134	.043	3.122	$.002^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.136	.043	3.163	$.002^{\mathrm{C}}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * G ender (1=Male; 2=Female)

Crosstab

			Gender (1=Male; 2=Female)		Total
			1	2	
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	184	223	407
		\% of Total	34.6\%	41.9\%	76.5\%
	2	Count	17	36	53
		\% of Total	3.2\%	6.8\%	10.0\%
	3	Count	3	8	11
		\% of Total	0.6\%	1.5\%	2.1\%
	4	Count	9	24	33
		\% of Total	1.7\%	4.5\%	6.2\%
	5	Count	13	15	28
		\% of Total	2.4\%	2.8\%	5.3\%
Total		Count	226	306	532
		\% of Total	42.5\%	57.5\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.931^{a}	4	.094
Likelihood Ratio	8.208	4	.084
Linear-by-Linear	2.256		1

a. 1 cells (10.0%) have expected count less than 5 . The minimum expected count is 4.67 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 065	. 043	1.504	. $133{ }^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	. 093	. 042	2.148	. $032{ }^{\text {c }}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Gender (1=Male; 2=Fema le)

Crosstab

			Gender (1=Male; 2=Female)		Total
		1		2	
Hispanic or Latino (1=Yes;	1	Count	13	35	48
2=No; 3=Unsure)		\% of Total	2.4%	6.6%	9.0%
	2	Count	199	256	455
		\% of Total	37.4%	48.1%	85.5%
	3	Count	14	15	29
		\% of Total	2.6%	2.8%	5.5%
Total	Count	226	306	532	
		\% of Total	42.5%	57.5%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.349^{a}	2	.069
Likelihood Ratio	5.588	2	.061
Linear-by-Linear	4.404	1	.036
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 12.32 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 091	. 042	-2.105	. $036{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 092	. 041	-2.122	. $034^{\text {c }}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+) * Gender (1=Male; 2=F emale)

Crosstab

			Gender (1=Male; 2=Female)		Total
			1	2	
Age Group (1=18-29; $2=30-39$; 3=40-49; 4=50+)	1	Count	17	18	35
		\% of Total	3.2\%	3.4\%	6.6\%
	2	Count	30	49	79
		\% of Total	5.6\%	9.2\%	14.8\%
	3	Count	63	72	135
		\% of Total	11.8\%	13.5\%	25.4\%
	4	Count	116	167	283
		\% of Total	21.8\%	31.4\%	53.2\%
Total		Count	226	306	532
		\% of Total	42.5\%	57.5\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2.414^{a}	3	.491
Likelihood Ratio	2.409	3	.492
Linear-by-Linear	.212	1	.646
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 14.87 .

Symmetric Measures

			Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.020	.043	.460	$.646^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	.023	.043	.533	$.594^{\mathrm{C}}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 =Other/No affiliation) * Gender (1=Male; 2=Female)

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.806^{a}	4	.012
Likelihood Ratio	12.971	4	.011
Linear-by-Linear	2.877	1	.090
Association			
N of Valid Cases	532		

a. 2 cells (20.0%) have expected count less than 5 . The minimum expected count is 2.55 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 074	. 044	-1.699	. $090{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 057	. 044	-1.304	$.193{ }^{\text {c }}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

CROSSTABS

/TABLES=Areyouregisteredtovote1yes2no Howlikelyareyoutovoteinthisyearspresi dentialelections1likely2som Party1Democrat2Republican3Independentorminorparty
Presidentialvote10bama2Romney30therUnsure President10bama2Romney3GaryJohnson 4NotSure
President10bamaBiden2RomneyRyan3Notsure President10bamaClinton2RomneyRyan3Not sure U.S.Senate1RepublicanConnieMack2BillNelson RickScottsjobperformance1Appr ove2Disapprove3Unsure Race1White2AfricanAmerican3Asian40ther5Refuse Hispanico rLatino1Yes2No3Unsure
AgeGroup118292303934049450 Gender1Male2Female BY ReligiousAffiliation1Catholi c2Protestant3Jewish4Muslim50therNoaf
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ CORR
/CELLS=COUNT TOTAL
/COUNT ROUND CELL.

Crosstabs

[DataSet1]

Warnings

> No measures of association are computed for the crosstabulation of Are you registered to vote (1=yes; 2=no) * Religious Affiliation (1=Catholic; 2=Protestant; $3=$ Jewish; $4=$ Muslim; $5=$ Other/No affiliation). At least one variable in each 2-way table upon which measures of association are computed is a constant.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Are you registered to vote (1=yes; 2=no) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	536	61.2\%	340	38.8\%	876	100.0\%
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	536	61.2\%	340	38.8\%	876	100.0\%
Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	536	61.2\%	340	38.8\%	876	100.0\%
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	536	61.2\%	340	38.8\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	536	61.2\%	340	38.8\%	876	100.0\%
President (1=ObamaBiden; 2=Romney-Ryan; 3= Not sure) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	536	61.2\%	340	38.8\%	876	100.0\%
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	536	61.2\%	340	38.8\%	876	100.0\%
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	536	61.2\%	340	38.8\%	876	100.0\%
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	536	61.2\%	340	38.8\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	536	61.2\%	340	38.8\%	876	100.0\%
Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	536	61.2\%	340	38.8\%	876	100.0\%
Age Group (1=18-29; $2=30-39 ; 3=40-49 ; 4=50+\text {) }$ * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	536	61.2\%	340	38.8\%	876	100.0\%
Gender (1=Male; 2=Female) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	532	60.7\%	344	39.3\%	876	100.0\%

Are you registered to vote (1=yes; 2=no) * Religious Affiliation (1=Cat holic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)

Crosstab

		Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
		1	2	3
Are you registered to vote (1=yes; 2=no)	Count \% of Total	$\begin{array}{r} 143 \\ 26.7 \% \end{array}$	$\begin{array}{r} 247 \\ 46.1 \% \end{array}$	$\begin{array}{r} 35 \\ 6.5 \% \end{array}$
Total	Count \% of Total	$\begin{array}{r} 143 \\ 26.7 \% \end{array}$	$\begin{array}{r} 247 \\ 46.1 \% \end{array}$	$\begin{array}{r} 35 \\ 6.5 \% \end{array}$

Crosstab

		Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; \ldots		
		4	Total	
Are you registered to vote (1=yes; 2=no)	1	Count	6	105
Total	\% of Total	1.1%	19.6%	100.0%

Chi-Square Tests

	Value
Pearson Chi-Square	\cdot
N of Valid Cases	536

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

| | Value |
| :--- | :--- | ---: |
| Interval by Interval \quad Pearson's R | $\cdot{ }^{\circ}$ |
| N of Valid Cases | 536 |

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * Religious Affiliation (1=Catholic; 2 =Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
			1	2	3
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	1	Count	136	245	34
		\% of Total	25.4\%	45.7\%	6.3\%
	2	Count	7	2	1
		\% of Total	1.3\%	0.4\%	0.2\%
Total		Count	143	247	35
		\% of Total	26.7\%	46.1\%	6.5\%

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.670^{a}	4	.154
Likelihood Ratio	6.916	4	.140
Linear-by-Linear	.213	1	.644
Association	536		
N of Valid Cases			

a. 4 cells (40.0%) have expected count less than 5 . The minimum expected count is .15 .

Symmetric Measures

		Asymp. Std. Error $^{\text {a }}$	Approx. T ${ }^{\text {b }}$	Approx. Sig.	
Interval by Interval	Pearson's R	-.020	.050	-.461	$.645^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-.050	.053	-1.148	$.251^{\text {c }}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Rel igious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Ot her/No affiliation)

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
			1	2	3
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	62	90	18
		\% of Total	11.6\%	16.8\%	3.4\%
	2	Count	62	116	11
		\% of Total	11.6\%	21.6\%	2.1\%
	3	Count	19	41	6
		\% of Total	3.5\%	7.6\%	1.1\%
Total		Count	143	247	35
		\% of Total	26.7\%	46.1\%	6.5\%

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; ...		Total
			4	5	
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	4	55	229
		\% of Total	0.7\%	10.3\%	42.7\%
	2	Count	1	20	210
		\% of Total	0.2\%	3.7\%	39.2\%
	3	Count	1	30	97
		\% of Total	0.2\%	5.6\%	18.1\%
Total		Count	6	105	536
		\% of Total	1.1\%	19.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	31.172^{a}	8	.000
Likelihood Ratio	32.785	8	.000
Linear-by-Linear	.027	1	.870
Association			
N of Valid Cases	536		

a. 3 cells (20.0%) have expected count less than 5 . The minimum expected count is 1.09 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.007	.048	.163	$.870^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.002	.046	-.055	$.956^{\mathrm{C}}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
			1	2	3
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	63	84	18
		\% of Total	11.8\%	15.7\%	3.4\%
	2	Count	72	150	16
		\% of Total	13.4\%	28.0\%	3.0\%
	3	Count	8	13	1
		\% of Total	1.5\%	2.4\%	0.2\%
Total		Count	143	247	35
		\% of Total	26.7\%	46.1\%	6.5\%

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; \ldots		
		4	5	Total	
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	4	74	243
		\% of Total	0.7%	13.8%	45.3%
	2	Count	1	27	266
		\% of Total	0.2%	5.0%	49.6%
	3	Count	1	4	27
		$\%$ of Total	0.2%	0.7%	5.0%
Total	Count	6	105	536	
		$\%$ of Total	1.1%	19.6%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	44.607^{a}	8	.000
Likelihood Ratio	45.186	8	.000
Linear-by-Linear	22.272	1	.000
Association			
N of Valid Cases	536		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .30 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	${\text { Approx. } \mathrm{T}^{\mathrm{b}}}^{\text {Value }}$	Approx. Sig.	
Interval by Interval	Pearson's R	-.204	.043	-4.816	$.000^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.164	.044	-3.835	$.000^{\mathrm{C}}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Relig ious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Othe r/No affiliation)

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
			1	2	3
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	63	80	18
		\% of Total	11.8\%	14.9\%	3.4\%
	2	Count	70	144	15
		\% of Total	13.1\%	26.9\%	2.8\%
	3	Count	4	7	0
		\% of Total	0.7\%	1.3\%	0.0\%
	4	Count	6	16	2
		\% of Total	1.1\%	3.0\%	0.4\%
Total		Count	143	247	35
		\% of Total	26.7\%	46.1\%	6.5\%

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; ...		Total
			4	5	
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	4	71	236
		\% of Total	0.7\%	13.2\%	44.0\%
	2	Count	1	24	254
		\% of Total	0.2\%	4.5\%	47.4\%
	3	Count	0	5	16
		\% of Total	0.0\%	0.9\%	3.0\%
	4	Count	1	5	30
		\% of Total	0.2\%	0.9\%	5.6\%
Total		Count	6	105	536
		\% of Total	1.1\%	19.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	47.625^{a}	12	.000
Likelihood Ratio	50.190	12	.000
Linear-by-Linear	8.458	1	.004
Association			
N of Valid Cases	536		

a. 8 cells (40.0%) have expected count less than 5 . The minimum expected count is .18 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\text {a }}$	Approx. T ${ }^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-.126	.044	-2.929	$.004^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-.127	.045	-2.959	$.003^{\text {c }}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
			1	2	3
President (1=Obama- Biden; 2=Romney-Ryan; $3=\text { Not sure) }$	1	Count	64	83	18
		\% of Total	11.9\%	15.5\%	3.4\%
	2	Count	71	151	16
		\% of Total	13.2\%	28.2\%	3.0\%
	3	Count	8	13	1
		\% of Total	1.5\%	2.4\%	0.2\%
Total		Count	143	247	35
		\% of Total	26.7\%	46.1\%	6.5\%

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; ..		Total
			4	5	
President (1=Obama- Biden; 2=Romney-Ryan; $3=\text { Not sure) }$	1	Count	4	73	242
		\% of Total	0.7\%	13.6\%	45.1\%
	2	Count	1	27	266
		\% of Total	0.2\%	5.0\%	49.6\%
	3	Count	1	5	28
		\% of Total	0.2\%	0.9\%	5.2\%
Total		Count	6	105	536
		\% of Total	1.1\%	19.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	44.106^{a}	8	.000
Likelihood Ratio	44.891	8	.000
Linear-by-Linear	19.141	1	.000
Association			
N of Valid Cases	536		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .31 .

Symmetric Measures

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
			1	2	3
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure)	1	Count	68	86	18
		\% of Total	12.7\%	16.0\%	3.4\%
	2	Count	68	147	15
		\% of Total	12.7\%	27.4\%	2.8\%
	3	Count	7	14	2
		\% of Total	1.3\%	2.6\%	0.4\%
Total		Count	143	247	35
		\% of Total	26.7\%	46.1\%	6.5\%

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; ...		Total
			4	5	
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure)	1	Count	3	70	245
		\% of Total	0.6\%	13.1\%	45.7\%
	2	Count	0	25	255
		\% of Total	0.0\%	4.7\%	47.6\%
	3	Count	3	10	36
		\% of Total	0.6\%	1.9\%	6.7\%
Total		Count	6	105	536
		\% of Total	1.1\%	19.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	58.896^{a}	8	.000
Likelihood Ratio	53.412	8	.000
Linear-by-Linear	6.240	1	.012
Association			
N of Valid Cases	536		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .40 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 108	. 047	-2.510	. $012^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 086	. 045	-2.003	. $046{ }^{\text {c }}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Religious Affi liation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affil iation)

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
			1	2	3
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	58	120	11
		\% of Total	10.8\%	22.4\%	2.1\%
	2	Count	68	88	21
		\% of Total	12.7\%	16.4\%	3.9\%
	3	Count	17	39	3
		\% of Total	3.2\%	7.3\%	0.6\%
Total		Count	143	247	35
		\% of Total	26.7\%	46.1\%	6.5\%

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	43.077^{a}	8	.000
Likelihood Ratio	46.566	8	.000
Linear-by-Linear	23.522	1	.000
Association			
N of Valid Cases	536		

a. 3 cells (20.0%) have expected count less than 5 . The minimum expected count is .96 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 210	. 039	4.956	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 172	. 040	4.034	. $000{ }^{\text {c }}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
			1	2	3
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count	50	114	8
		\% of Total	9.3\%	21.3\%	1.5\%
	2	Count	52	75	17
		\% of Total	9.7\%	14.0\%	3.2\%
	3	Count	41	58	10
		\% of Total	7.6\%	10.8\%	1.9\%
Total		Count	143	247	35
		\% of Total	26.7\%	46.1\%	6.5\%

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; ...		Total
			4	5	
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count	1	17	190
		\% of Total	0.2\%	3.2\%	35.4\%
	2	Count	1	60	205
		\% of Total	0.2\%	11.2\%	38.2\%
	3	Count	4	28	141
		\% of Total	0.7\%	5.2\%	26.3\%
Total		Count	6	105	536
		\% of Total	1.1\%	19.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	41.639^{a}	8	.000
Likelihood Ratio	42.149	8	.000
Linear-by-Linear	7.596	1	.006
Association			
N of Valid Cases	536		

a. 3 cells (20.0%) have expected count less than 5 . The minimum expected count is 1.58 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 119	. 039	2.773	.006 ${ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 087	. 041	2.029	. $043{ }^{\text {c }}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Re ligious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=0 ther/No affiliation)

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
			1	2	3
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	115	195	31
		\% of Total	21.5\%	36.4\%	5.8\%
	2	Count	8	22	2
		\% of Total	1.5\%	4.1\%	0.4\%
	3	Count	4	4	0
		\% of Total	0.7\%	0.7\%	0.0\%
	4	Count	13	14	0
		\% of Total	2.4\%	2.6\%	0.0\%
	5	Count	3	12	2
		\% of Total	0.6\%	2.2\%	0.4\%
Total		Count	143	247	35
		\% of Total	26.7\%	46.1\%	6.5\%

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; ...		Total
			4	5	
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	3	65	409
		\% of Total	0.6\%	12.1\%	76.3\%
	2	Count	1	20	53
		\% of Total	0.2\%	3.7\%	9.9\%
	3	Count	2	1	11
		\% of Total	0.4\%	0.2\%	2.1\%
	4	Count	0	7	34
		\% of Total	0.0\%	1.3\%	6.3\%
	5	Count	0	12	29
		\% of Total	0.0\%	2.2\%	5.4\%
Total		Count	6	105	536
		\% of Total	1.1\%	19.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	62.796^{a}	16	.000
Likelihood Ratio	43.224	16	.000
Linear-by-Linear	8.085	1	.004
Association			
N of Valid Cases	536		

a. 11 cells (44.0%) have expected count less than 5 . The minimum expected count is .12 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T ${ }^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	.123	.047	2.863	$.004^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	.120	.045	2.786	$.006^{\text {c }}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Religious Affiliation (1=C atholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
			1	2	3
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	21	17	0
		\% of Total	3.9\%	3.2\%	0.0\%
	2	Count	115	217	34
		\% of Total	21.5\%	40.5\%	6.3\%
	3	Count	7	13	1
		\% of Total	1.3\%	2.4\%	0.2\%
Total		Count	143	247	35
		\% of Total	26.7\%	46.1\%	6.5\%

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; ..		Total
			4	5	
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	1	9	48
		\% of Total	0.2\%	1.7\%	9.0\%
	2	Count	5	85	456
		\% of Total	0.9\%	15.9\%	85.1\%
	3	Count	0	11	32
		\% of Total	0.0\%	2.1\%	6.0\%
Total		Count	6	105	536
		\% of Total	1.1\%	19.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	16.359^{a}	8	.038
Likelihood Ratio	18.499	8	.018
Linear-by-Linear	4.149	1	.042
Association			
N of Valid Cases	536		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .36 .

Symmetric Measures

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+) * Religious Affiliation (1 =Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
			1	2	3
$\begin{aligned} & \text { Age Group (1=18-29; } \\ & 2=30-39 ; 3=40-49 ; 4=50+) \end{aligned}$	1	Count	9	10	0
		\% of Total	1.7\%	1.9\%	0.0\%
	2	Count	22	33	3
		\% of Total	4.1\%	6.2\%	0.6\%
	3	Count	29	60	5
		\% of Total	5.4\%	11.2\%	0.9\%
	4	Count	83	144	27
		\% of Total	15.5\%	26.9\%	5.0\%
Total		Count	143	247	35
		\% of Total	26.7\%	46.1\%	6.5\%

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	51.079^{a}	12	.000
Likelihood Ratio	50.130	12	.000
Linear-by-Linear	20.922	1	.000
Association			
N of Valid Cases	536		

a. 5 cells (25.0%) have expected count less than 5 . The minimum expected count is .40 .

Symmetric Measures

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender (1=Male; 2=Female) * Religious Affiliation (1=Catholic; 2=Prote stant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)

		Crosstab		
		Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)		
		1	2	3
Gender (1=Male; 2=Female)	1	Count	62	89
		\% of Total	11.7%	16.7%

Crosstab

			Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; ...		Total
			4	5	
Gender (1=Male; 2=Female)	1	Count	5	50	226
		\% of Total	0.9\%	9.4\%	42.5\%
	2	Count	1	53	306
		\% of Total	0.2\%	10.0\%	57.5\%
Total		Count	6	103	532
		\% of Total	1.1\%	19.4\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.806^{a}	4	.012
Likelihood Ratio	12.971	4	.011
Linear-by-Linear	2.877	1	.090
Association			
N of Valid Cases	532		

a. 2 cells (20.0%) have expected count less than 5 . The minimum expected count is 2.55 .

Symmetric Measures

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

CROSSTABS

/TABLES=Areyouregisteredtovote1yes2no Howlikelyareyoutovoteinthisyearspresi dentialelections1likely2som Party1Democrat2Republican3Independentorminorparty Presidentialvote10bama2Romney30therUnsure President10bama2Romney3GaryJohnson 4NotSure
President10bamaBiden2RomneyRyan3Notsure President10bamaClinton2RomneyRyan3Not sure U.S.Senate1RepublicanConnieMack2BillNelson RickScottsjobperformance1Appr ove2Disapprove3Unsure Race1White2AfricanAmerican3Asian40ther5Refuse Hispanico rLatino1Yes2No3Unsure

```
Gender1Male2Female ReligiousAffiliation1Catholic2Protestant3Jewish4Muslim50th
erNoaf BY AgeGroup118292303934049450
    /FORMAT=AVALUE TABLES
    /STATISTICS=CHISQ CORR
    /CELLS=COUNT TOTAL
    /COUNT ROUND CELL.
```


Crosstabs

[DataSet1]

Warnings

No measures of association are computed for the
crosstabulation of Are you registered to vote (1=yes; 2=no) *
Age Group (1=18-29; $2=30-39 ; 3=40-49 ; 4=50+$). At least one
variable in each 2-way table upon which measures of
association are computed is a constant.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Are you registered to vote (1=yes; 2=no) * Age Group (1=18-29; 2=30-39; $3=40-49$; 4=50+)	543	62.0\%	333	38.0\%	876	100.0\%
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely) * Age Group (1=1829; 2=30-39; 3=40-49; 4=50+)	543	62.0\%	333	38.0\%	876	100.0\%
Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Age Group (1=1829; 2=30-39; 3=40-49; 4=50+)	543	62.0\%	333	38.0\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Age Group (1=18-29; 2=30-39; $3=40-49$; 4=50+)	543	62.0\%	333	38.0\%	876	100.0\%
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Age Group (1=18-29; $2=30-39 ; 3=40-49 ; 4=50+$)	543	62.0\%	333	38.0\%	876	100.0\%
President (1=Obama- Biden; 2=Romney-Ryan; 3= Not sure) * Age Group $(1=18-29 ; 2=30-39 ; 3=40-$ 49; 4=50+)	543	62.0\%	333	38.0\%	876	100.0\%
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure) * Age Group $(1=18-29 ; 2=30-39 ; 3=40-$ $49 ; 4=50+\text {) }$	543	62.0\%	333	38.0\%	876	100.0\%
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Age Group (1=18-29; 2=30-39; $3=40-49 ; 4=50+)$	543	62.0\%	333	38.0\%	876	100.0\%
$\begin{aligned} & \text { Rick Scott's job } \\ & \text { performance (1=Approve; } \\ & 2=\text { Disapprove; } \\ & 3=\text { Unsure)? * Age Group } \\ & (1=18-29 ; 2=30-39 ; 3=40- \\ & 49 ; 4=50+) \end{aligned}$	543	62.0\%	333	38.0\%	876	100.0\%
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)	543	62.0\%	333	38.0\%	876	100.0\%
$\begin{aligned} & \text { Hispanic or Latino (1=Yes; } \\ & 2=\text { No; } 3=\text { Unsure) * Age } \\ & \text { Group }(1=18-29 ; 2=30-39 ; \\ & 3=40-49 ; 4=50+) \end{aligned}$	543	62.0\%	333	38.0\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N
Gender (1=Male; 2=Female) * Age Group (1=18-29; 2=30-39; 3=40- 49; 4=50+) Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)		532	60.7%	344	39.3%	876

Are you registered to vote (1=yes; 2=no) * Age Group (1=18-29; 2=30-3

9; 3=40-49; 4=50+)

Crosstab

Crosstab

			Total
Are you registered to vote (1=yes; 2=no)	1	Count $\%$ of Total	543 100.0%
Total		Count	543
		\% of Total	100.0%

Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot{ }^{\text {a }}$
N of Valid Cases	543

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval	Pearson's R
N of Valid Cases	$\cdot{ }^{2}$

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * Age Group (1=18-29; 2=30-39; 3=40 -49; 4=50+)

Crosstab

			Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)			
			1	2	3	4
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	1	Count	35	80	134	280
		\% of Total	6.4\%	14.7\%	24.7\%	51.6\%
	2	Count	1	2	2	9
		\% of Total	0.2\%	0.4\%	0.4\%	1.7\%
Total		Count	36	82	136	289
		\% of Total	6.6\%	15.1\%	25.0\%	53.2\%

Crosstab

			Total
How likely are you to vote in this year's presidential elections (1=likely;	1	Count	529
2=somewhat likely; 3=not	2	\% of Total	97.4%
likely)		Count	14
Total		Count Total	2.6%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	1.007^{a}	3	.800
Likelihood Ratio	1.106	3	.776
Linear-by-Linear	.191	1	.662
Association			
N of Valid Cases	543		

a. 3 cells (37.5%) have expected count less than 5 . The minimum expected count is .93.

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.019	.044	.436	$.663^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.027	.044	.624	$.533^{\mathrm{C}}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Ag e Group (1=18-29; 2=30-39; 3=40-49; 4=50+)

Crosstab

			Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)			
			1	2	3	4
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	20	32	62	119
		\% of Total	3.7\%	5.9\%	11.4\%	21.9\%
	2	Count	8	27	46	130
		\% of Total	1.5\%	5.0\%	8.5\%	23.9\%
	3	Count	8	23	28	40
		\% of Total	1.5\%	4.2\%	5.2\%	7.4\%
Total		Count	36	82	136	289
		\% of Total	6.6\%	15.1\%	25.0\%	53.2\%

Crosstab

		Total	
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	233
	2	\% of Total	42.9%
		Count	211
	3	Count Total	38.9%
Total		\% of Total	18.2%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	17.162^{a}	6	.009
Likelihood Ratio	17.097	6	.009
Linear-by-Linear	.606	1	.436
Association			
N of Valid Cases	543		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 6.56.

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	${\text { Approx. } \mathrm{T}^{\mathrm{b}}}^{\text {Value }}$	Approx. Sig.	
Interval by Interval	Pearson's R	-.033	.045	-.778	$.437^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.023	.044	-.543	$.587^{\mathrm{C}}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)

Crosstab

			Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)			
			1	2	3	4
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	22	40	70	115
		\% of Total	4.1\%	7.4\%	12.9\%	21.2\%
	2	Count	14	33	60	160
		\% of Total	2.6\%	6.1\%	11.0\%	29.5\%
	3	Count	0	9	6	14
		\% of Total	0.0\%	1.7\%	1.1\%	2.6\%
Total		Count	36	82	136	289
		\% of Total	6.6\%	15.1\%	25.0\%	53.2\%

Crosstab

		Total	
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	247
		\% of Total	45.5%
	2	Count	267
		\% of Total	49.2%
	3	Count	29
		\% of Total	5.3%
Total		Count	543
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	17.472^{a}	6	.008
Likelihood Ratio	18.202	6	.006
Linear-by-Linear	4.750	1	.029
Association			
N of Valid Cases	543		

a. 2 cells (16.7%) have expected count less than 5 . The minimum expected count is 1.92.

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.	
Interval by Interval	Pearson's R	.094	.042	2.187	$.029^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.106	.043	2.486	$.013^{\mathrm{c}}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)

Crosstab

			Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)			
			1	2	3	4
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	19	40	69	113
		\% of Total	3.5\%	7.4\%	12.7\%	20.8\%
	2	Count	11	32	58	155
		\% of Total	2.0\%	5.9\%	10.7\%	28.5\%
	3	Count	5	2	3	6
		\% of Total	0.9\%	0.4\%	0.6\%	1.1\%
	4	Count	1	8	6	15
		\% of Total	0.2\%	1.5\%	1.1\%	2.8\%
Total		Count	36	82	136	289
		\% of Total	6.6\%	15.1\%	25.0\%	53.2\%

Crosstab

			Total
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	241
		\% of Total	44.4%
	2	Count	256
		\% of Total	47.1%
	3	Count	16
		\% of Total	2.9%
	4	Count	30
		\% of Total	5.5%
Total		Count	543
		$\%$ of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	29.604^{a}	9	.001
Likelihood Ratio	22.614	9	.007
Linear-by-Linear	.346	1	.556
Association	543		
N of Valid Cases			

a. 5 cells (31.2%) have expected count less than 5 . The minimum expected count is 1.06 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.025	.045	.588	$.557^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.074	.044	1.724	$.085^{\mathrm{C}}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * Age Gro up (1=18-29; 2=30-39; 3=40-49; 4=50+)

Crosstab

			Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)			
			1	2	3	4
President (1=Obama- Biden; 2=Romney-Ryan; $3=$ Not sure)	1	Count	22	40	70	114
		\% of Total	4.1\%	7.4\%	12.9\%	21.0\%
	2	Count	14	32	60	162
		\% of Total	2.6\%	5.9\%	11.0\%	29.8\%
	3	Count	0	10	6	13
		\% of Total	0.0\%	1.8\%	1.1\%	2.4\%
Total		Count	36	82	136	289
		\% of Total	6.6\%	15.1\%	25.0\%	53.2\%

Crosstab

		Total	
President (1=Obama- 3= Not sure)	1	Count	246
		\% of Total	45.3%
	2	Count	268
		\% of Total	49.4%
Total		Count	29
		\% of Total	5.3%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	21.231^{a}	6	.002
Likelihood Ratio	21.217	6	.002
Linear-by-Linear	4.343	1	.037
Association			
N of Valid Cases	543		

a. 2 cells (16.7\%) have expected count less than 5 . The minimum expected count is 1.92.

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 090	. 043	2.090	. $037{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 105	. 043	2.452	. $015{ }^{\text {c }}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * Age Gro up ($1=18-29 ; 2=30-39 ; 3=40-49 ; 4=50+$)

Crosstab

			Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)			
			1	2	3	4
President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure)	1	Count	22	40	70	118
		\% of Total	4.1\%	7.4\%	12.9\%	21.7\%
	2	Count	12	33	58	154
		\% of Total	2.2\%	6.1\%	10.7\%	28.4\%
	3	Count	2	9	8	17
		\% of Total	0.4\%	1.7\%	1.5\%	3.1\%
Total		Count	36	82	136	289
		\% of Total	6.6\%	15.1\%	25.0\%	53.2\%

Crosstab

		Total	
President (1=Obama- Clinton; 2=Romney-Ryan; 1 Count	250		
3=Not sure)		\% of Total	46.0%
	2	Count	257
		\% of Total	47.3%
	3	Count	36
		\% of Total	6.6%
Total		Count	543
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.398^{a}	6	.054
Likelihood Ratio	12.050	6	.061
Linear-by-Linear	3.006	1	.083
Association			
N of Valid Cases	543		

a. 1 cells (8.3%) have expected count less than 5 . The minimum expected count is 2.39 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.074	.044	1.737	$.083^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.091	.043	2.132	$.033^{\mathrm{c}}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Age Group (1 =18-29; 2=30-39; 3=40-49; 4=50+)

Crosstab

	Crosstab		
			Total
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	207
		\% of Total	38.1%
	2	Count	249
		\% of Total	45.9%
	3	Count	87
		\% of Total	16.0%
Total		Count	543
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.865^{a}	6	.334
Likelihood Ratio	6.896	6	.331
Linear-by-Linear	4.630	1	.031
Association			
N of Valid Cases	543		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 5.77.

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	-.092	.042	-2.159	$.031^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.099	.042	-2.306	$.021^{\mathrm{C}}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)

Crosstab

			Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)			
			1	2	3	4
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count	13	24	42	112
		\% of Total	2.4\%	4.4\%	7.7\%	20.6\%
	2	Count	10	35	61	102
		\% of Total	1.8\%	6.4\%	11.2\%	18.8\%
	3	Count	13	23	33	75
		\% of Total	2.4\%	4.2\%	6.1\%	13.8\%
Total		Count	36	82	136	289
		\% of Total	6.6\%	15.1\%	25.0\%	53.2\%

Crosstab

			Total
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count	191
	2	\% of Total	35.2%
		Count	208
	3	Count Total	38.3%
Total		\% of Total	26.5%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.862^{a}	6	.248
Likelihood Ratio	7.823	6	.251
Linear-by-Linear	2.011	1	.156
Association			
N of Valid Cases	543		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 9.55 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 061	. 044	-1.420	. $156{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 063	. 043	-1.471	$.142^{\text {c }}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * A ge Group (1=18-29; 2=30-39; 3=40-49; 4=50+)

Crosstab

			Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)			
			1	2	3	4
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	22	44	94	253
		\% of Total	4.1\%	8.1\%	17.3\%	46.6\%
	2	Count	7	15	21	11
		\% of Total	1.3\%	2.8\%	3.9\%	2.0\%
	3	Count	1	2	3	7
		\% of Total	0.2\%	0.4\%	0.6\%	1.3\%
	4	Count	5	14	9	6
		\% of Total	0.9\%	2.6\%	1.7\%	1.1\%
	5	Count	1	7	9	12
		\% of Total	0.2\%	1.3\%	1.7\%	2.2\%
Total		Count	36	82	136	289
		\% of Total	6.6\%	15.1\%	25.0\%	53.2\%

Crosstab

			Total
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	413
		\% of Total	76.1%
	2	Count	54
		\% of Total	9.9%
	3	Count	13
		\% of Total	2.4%
	4	Count	34
		\% of Total	6.3%
	5	Count	29
		\% of Total	5.3%
Total		Count	543
		$\%$ of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	66.435^{a}	12	.000
Likelihood Ratio	64.780	12	.000
Linear-by-Linear	25.925	1	.000
Association			
N of Valid Cases	543		

a. 7 cells (35.0%) have expected count less than 5 . The minimum expected count is .86 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\text {a }}$	Approx. T $^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-.219	.043	-5.213	$.000^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	-.290	.042	-7.035	$.000^{\text {c }}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Age Group (1=18-29; 2=3
0-39; 3=40-49; 4=50+)

Crosstab

	Crosstab		
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	48
		\% of Total	8.8%
	2	Count	463
		\% of Total	85.3%
	3	Count	32
		\% of Total	5.9%
Total		Count	543
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	22.182^{a}	6	.001
Likelihood Ratio	23.016	6	.001
Linear-by-Linear	14.476	1	.000
Association			
N of Valid Cases	543		

a. 3 cells (25.0%) have expected count less than 5 . The minimum expected count is 2.12 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.163	.042	3.853	$.000^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.153	.042	3.592	$.000^{\mathrm{C}}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender (1=Male; 2=Female) * Age Group (1=18-29; 2=30-39; 3=40-49; 4 $=50+$)

Crosstab

			Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)			
			1	2	3	4
Gender (1=Male; 2=Female)	1	Count	17	30	63	116
		\% of Total	3.2\%	5.6\%	11.8\%	21.8\%
	2	Count	18	49	72	167
		\% of Total	3.4\%	9.2\%	13.5\%	31.4\%
Total		Count	35	79	135	283
		\% of Total	6.6\%	14.8\%	25.4\%	53.2\%

Crosstab

			Total
Gender (1=Male; 2=Female)	1	Count	226
		\% of Total	42.5%
	2	Count	306
		\% of Total	57.5%
Total		Count	532
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2.414^{a}	3	.491
Likelihood Ratio	2.409	3	.492
Linear-by-Linear	.212	1	.646
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 14.87 .

Symmetric Measures

			Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.020	.043	.460	$.646^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	.023	.043	.533	$.594^{\mathrm{C}}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 $=O$ ther/No affiliation) * Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)

Crosstab						
			Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)			
			1	2	3	4
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	1	Count \% of Total	$\begin{array}{r} \hline 9 \\ 1.7 \% \\ \hline \end{array}$	$\begin{array}{r} 22 \\ 4.1 \% \\ \hline \end{array}$	$\begin{array}{r} 29 \\ 5.4 \% \\ \hline \end{array}$	$\begin{array}{r} \hline 83 \\ 15.5 \% \\ \hline \end{array}$
	2	Count \% of Total	$\begin{array}{r} 10 \\ 1.9 \% \end{array}$	$\begin{array}{r} 33 \\ 6.2 \% \end{array}$	$\begin{array}{r} 60 \\ 11.2 \% \end{array}$	$\begin{array}{r} 144 \\ 26.9 \% \end{array}$
	3	Count \% of Total	$\begin{array}{r} 0 \\ 0.0 \% \end{array}$	3 0.6%	5 0.9%	27 5.0%
	4	Count \% of Total	$\begin{array}{r} 2 \\ 0.4 \% \\ \hline \end{array}$	1 0.2%	1 0.2%	2 0.4%
	5	Count \% of Total	$\begin{array}{r} 15 \\ 2.8 \% \end{array}$	20 3.7%	40 7.5%	30 5.6%
Total		Count \% of Total	$\begin{array}{r} 36 \\ 6.7 \% \end{array}$	$\begin{array}{r} 79 \\ 14.7 \% \end{array}$	$\begin{array}{r} 135 \\ 25.2 \% \end{array}$	$\begin{array}{r} 286 \\ 53.4 \% \end{array}$

Crosstab

			Total
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	1	Count \% of Total	26.7%
	2	Count	247
		\% of Total	46.1%
	3	Count	35
		\% of Total	6.5%
	4	Count	6
		\% of Total	1.1%
Total		Count	105
		\% of Total	19.6%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	51.079^{a}	12	.000
Likelihood Ratio	50.130	12	.000
Linear-by-Linear	20.922	1	.000
Association			
N of Valid Cases	536		

a. 5 cells (25.0%) have expected count less than 5 . The minimum expected count is .40 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\text {a }}$	Approx. T $^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-.198	.045	-4.662	$.000^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	-.147	.044	-3.428	$.001^{\text {c }}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

CROSSTABS
 /TABLES=Areyouregisteredtovote1yes2no Howlikelyareyoutovoteinthisyearspresi dentialelections1likely2som Party1Democrat2Republican3Independentorminorparty Presidentialvote10bama2Romney30therUnsure President10bama2Romney3GaryJohnson 4NotSure

President10bamaBiden2RomneyRyan3Notsure President10bamaClinton2RomneyRyan3Not sure U.S.Senate1RepublicanConnieMack2BillNelson RickScottsjobperformance1Appr ove2Disapprove3Unsure Race1White2AfricanAmerican3Asian4Other5Refuse Gender1Ma le2Female
ReligiousAffiliation1Catholic2Protestant3Jewish4Muslim50therNoaf AgeGroup1182 92303934049450 BY HispanicorLatino1Yes2No3Unsure
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ CORR
/CELLS=COUNT TOTAL
/COUNT ROUND CELL.

Crosstabs

[DataSet1]

Warnings

No measures of association are computed for the
crosstabulation of Are you registered to vote (1=yes; 2=no) *
Hispanic or Latino (1=Yes; 2=No; $3=$ Unsure). At least one
variable in each 2-way table upon which measures of
association are computed is a constant.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N		Percent	N	Percent	N

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	545	62.2\%	331	37.8\%	876	100.0\%
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	545	62.2\%	331	37.8\%	876	100.0\%
President (1=Obama- Biden; 2=Romney-Ryan; 3= Not sure) * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	545	62.2\%	331	37.8\%	876	100.0\%
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure) * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	545	62.2\%	331	37.8\%	876	100.0\%
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	545	62.2\%	331	37.8\%	876	100.0\%
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	545	62.2\%	331	37.8\%	876	100.0\%
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	545	62.2\%	331	37.8\%	876	100.0\%
$\begin{aligned} & \text { Gender (1=Male; } \\ & 2=\text { Female })^{*} \text { Hispanic or } \\ & \text { Latino (1=Yes; 2=No; } \\ & \text { 3=Unsure) } \end{aligned}$	532	60.7\%	344	39.3\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	536	61.2\%	340	38.8\%	876	100.0\%
Age Group (1=18-29; $2=30-39 ; 3=40-49 ; 4=50+\text {) }$ * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	543	62.0\%	333	38.0\%	876	100.0\%

Are you registered to vote (1=yes; 2=no) * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)

Crosstab

Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot a$
N of Valid Cases	545

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval N of Valid Cases	$\cdot{ }^{\mathrm{a}}$

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	13.401^{a}	2	.001
Likelihood Ratio	7.500	2	.024
Linear-by-Linear	5.835	1	.016
Association			
N of Valid Cases	545		

a. 2 cells (33.3\%) have expected count less than 5 . The minimum expected count is .82 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.	
Interval by Interval	Pearson's R	.104	.063	2.426	$.016^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.102	.062	2.386	$.017^{\mathrm{C}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Hi spanic or Latino (1=Yes; 2=No; 3=Unsure)

Crosstab

			Hispanic or Latino (1=Yes; 2=No; 3=Unsure)			Total
			1	2	3	
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	22	202	10	234
		\% of Total	4.0\%	37.1\%	1.8\%	42.9\%
	2	Count	14	187	11	212
		\% of Total	2.6\%	34.3\%	2.0\%	38.9\%
	3	Count	12	76	11	99
		\% of Total	2.2\%	13.9\%	2.0\%	18.2\%
Total		Count	48	465	32	545
		\% of Total	8.8\%	85.3\%	5.9\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	9.396^{a}	4	.052
Likelihood Ratio	8.545	4	.074
Linear-by-Linear	1.131	1	.288
Association			
N of Valid Cases	545		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 5.81 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.	
Interval by Interval	Pearson's R	.046	.048	1.063	$.288^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.046	.047	1.083	$.279^{\mathrm{c}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Hispanic o r Latino (1=Yes; 2=No; 3=Unsure)

Crosstab

			Hispanic or Latino (1=Yes; 2=No; 3=Unsure)			Total
			1	2	3	
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	21	214	12	247
		\% of Total	3.9\%	39.3\%	2.2\%	45.3\%
	2	Count	24	231	13	268
		\% of Total	4.4\%	42.4\%	2.4\%	49.2\%
	3	Count	3	20	7	30
		\% of Total	0.6\%	3.7\%	1.3\%	5.5\%
Total		Count	48	465	32	545
		\% of Total	8.8\%	85.3\%	5.9\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	17.866^{a}	4	.001
Likelihood Ratio	11.282	4	.024
Linear-by-Linear	1.577	1	.209
Association			
N of Valid Cases	545		

a. 2 cells (22.2%) have expected count less than 5 . The minimum expected count is 1.76 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.054	.049	1.257	$.209^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.039	.046	.921	$.358^{\mathrm{C}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Hisp
anic or Latino (1=Yes; 2=No; 3=Unsure)

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.334^{a}	6	.502
Likelihood Ratio	4.291	6	.637
Linear-by-Linear	.784	1	.376
Association			
N of Valid Cases	545		

a. 4 cells (33.3%) have expected count less than 5 . The minimum expected count is .94 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 038	. 047	. 885	. $376{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 016	. 045	. 379	$.705^{\text {c }}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)

Crosstab

			Hispanic or Latino (1=Yes; 2=No; 3=Unsure)			Total
			1	2	3	
President (1=Obama- Biden; 2=Romney-Ryan; $3=\text { Not sure) }$	1	Count	21	213	13	247
		\% of Total	3.9\%	39.1\%	2.4\%	45.3\%
	2	Count	25	231	13	269
		\% of Total	4.6\%	42.4\%	2.4\%	49.4\%
	3	Count	2	21	6	29
		\% of Total	0.4\%	3.9\%	1.1\%	5.3\%
Total		Count	48	465	32	545
		\% of Total	8.8\%	85.3\%	5.9\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.314^{a}	4	.015
Likelihood Ratio	8.066	4	.089
Linear-by-Linear	1.136	1	.286
Association			
N of Valid Cases	545		

a. 2 cells (22.2%) have expected count less than 5 . The minimum expected count is 1.70 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.046	.047	1.066	$.287^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.031	.045	.719	$.473^{\mathrm{C}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)

Crosstab

			Hispanic or Latino (1=Yes; 2=No; 3=Unsure)			Total
			1	2	3	
President (1=ObamaClinton; 2=Romney-Ryan; $3=$ Not sure)	1	Count	24	212	15	251
		\% of Total	4.4\%	38.9\%	2.8\%	46.1\%
	2	Count	22	224	12	258
		\% of Total	4.0\%	41.1\%	2.2\%	47.3\%
	3	Count	2	29	5	36
		\% of Total	0.4\%	5.3\%	0.9\%	6.6\%
Total		Count	48	465	32	545
		\% of Total	8.8\%	85.3\%	5.9\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.403^{a}	4	.248
Likelihood Ratio	4.413	4	.353
Linear-by-Linear	1.095	1	.295
Association			
N of Valid Cases	545		

a. 2 cells (22.2%) have expected count less than 5 . The minimum expected count is 2.11 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.045	.045	1.046	$.296^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.035	.044	.809	$.419^{\mathrm{C}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Hispanic or L atino (1=Yes; 2=No; 3=Unsure)

Crosstab

			Hispanic or Latino (1=Yes; 2=No; 3=Unsure)			Total
			1	2	3	
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	19	180	9	208
		\% of Total	3.5\%	33.0\%	1.7\%	38.2\%
	2	Count	22	218	10	250
		\% of Total	4.0\%	40.0\%	1.8\%	45.9\%
	3	Count	7	67	13	87
		\% of Total	1.3\%	12.3\%	2.4\%	16.0\%
Total		Count	48	465	32	545
		\% of Total	8.8\%	85.3\%	5.9\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.455^{a}	4	.004
Likelihood Ratio	12.066	4	.017
Linear-by-Linear	3.953	1	.047
Association			
N of Valid Cases	545		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 5.11.

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 085	. 047	1.994	. $047{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 076	. 046	1.785	. $075{ }^{\text {c }}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$.489^{\mathrm{a}}$	4	.975
Likelihood Ratio	.479	4	.976
Linear-by-Linear	.138	1	.710
Association	545		
N of Valid Cases			

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 8.46.

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.016	.043	.372	$.710^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.016	.043	.364	$.716^{\mathrm{c}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Hi spanic or Latino (1=Yes; 2=No; 3=Unsure)

Crosstab

			Hispanic or Latino (1=Yes; 2=No; 3=Unsure)			Total
			1	2	3	
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	18	387	10	415
		\% of Total	3.3\%	71.0\%	1.8\%	76.1\%
	2	Count	6	43	5	54
		\% of Total	1.1\%	7.9\%	0.9\%	9.9\%
	3	Count	3	9	1	13
		\% of Total	0.6\%	1.7\%	0.2\%	2.4\%
	4	Count	19	11	4	34
		\% of Total	3.5\%	2.0\%	0.7\%	6.2\%
	5	Count	2	15	12	29
		\% of Total	0.4\%	2.8\%	2.2\%	5.3\%
Total		Count	48	465	32	545
		\% of Total	8.8\%	85.3\%	5.9\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	190.974^{a}	8	.000
Likelihood Ratio	114.764	8	.000
Linear-by-Linear	.015	1	.902
Association			
N of Valid Cases	545		

a. 8 cells (53.3%) have expected count less than 5 . The minimum expected count is .76 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.	
Interval by Interval	Pearson's R	-.005	.076	-.122	$.903^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.042	.070	-.976	$.329^{\mathrm{c}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender (1=Male; 2=Female) * Hispanic or Latino (1=Yes; 2=No; 3=Unsu re)

Crosstab

			Hispanic or Latino (1=Yes; 2=No; 3=Unsure)			Total
			1	2	3	
Gender (1=Male; 2=Female)	1	Count	13	199	14	226
		\% of Total	2.4\%	37.4\%	2.6\%	42.5\%
	2	Count	35	256	15	306
		\% of Total	6.6\%	48.1\%	2.8\%	57.5\%
Total		Count	48	455	29	532
		\% of Total	9.0\%	85.5\%	5.5\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.349^{a}	2	.069
Likelihood Ratio	5.588	2	.061
Linear-by-Linear	4.404	1	.036
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 12.32 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	-.091	.042	-2.105	$.036^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.092	.041	-2.122	$.034^{\mathrm{c}}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 =Other/No affiliation) * Hispanic or Latino (1=Yes; 2=No; 3=Unsure)

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	16.359^{a}	8	.038
Likelihood Ratio	18.499	8	.018
Linear-by-Linear	4.149	1	.042
Association			
N of Valid Cases	536		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .36 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\text {a }}$	Approx. T ${ }^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	.088	.048	2.043	$.042^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	.106	.047	2.468	$.014^{\text {c }}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+) * Hispanic or Latino (1= Yes; 2=No; 3=Unsure)

Crosstab

			Hispanic or Latino (1=Yes; 2=No; 3=Unsure)			Total
			1	2	3	
Age Group (1=18-29;$2=30-39 ; 3=40-49 ; 4=50+\text {) }$	1	Count	7	29	0	36
		\% of Total	1.3\%	5.3\%	0.0\%	6.6\%
	2	Count	14	64	4	82
		\% of Total	2.6\%	11.8\%	0.7\%	15.1\%
	3	Count	14	111	11	136
		\% of Total	2.6\%	20.4\%	2.0\%	25.0\%
	4	Count	13	259	17	289
		\% of Total	2.4\%	47.7\%	3.1\%	53.2\%
Total		Count	48	463	32	543
		\% of Total	8.8\%	85.3\%	5.9\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	22.182^{a}	6	.001
Likelihood Ratio	23.016	6	.001
Linear-by-Linear	14.476	1	.000
Association			
N of Valid Cases	543		

a. 3 cells (25.0%) have expected count less than 5 . The minimum expected count is 2.12 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.163	.042	3.853	$.000^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.153	.042	3.592	$.000^{\mathrm{c}}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

CROSSTABS

/TABLES=Areyouregisteredtovote1yes2no Howlikelyareyoutovoteinthisyearspresi dentialelections1likely2som Party1Democrat2Republican3Independentorminorparty Presidentialvote10bama2Romney30therUnsure President10bama2Romney3GaryJohnson 4NotSure

President10bamaBiden2RomneyRyan3Notsure President10bamaClinton2RomneyRyan3Not sure U.S.Senate1RepublicanConnieMack2BillNelson RickScottsjobperformance1Appr ove2Disapprove3Unsure Gender1Male2Female
ReligiousAffiliation1Catholic2Protestant3Jewish4Muslim50therNoaf AgeGroup1182
92303934049450 HispanicorLatino1Yes2No3Unsure BY Race1White2AfricanAmerican3A
sian40ther5Refuse
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ CORR
/CELLS=COUNT TOTAL
/COUNT ROUND CELL.

Crosstabs

[DataSet1]

Warnings

> No measures of association are computed for the crosstabulation of Are you registered to vote (1=yes; $2=n o)$ * Race (1=White; $2=$ African American; $3=$ Asian; $4=$ Other; $5=$ Refuse $)$. At least one variable in each 2-way table upon which measures of association are computed is a constant.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Are you registered to vote (1=yes; 2=no) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	553	63.1\%	323	36.9\%	876	100.0\%
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	553	63.1\%	323	36.9\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	553	63.1\%	323	36.9\%	876	100.0\%
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	553	63.1\%	323	36.9\%	876	100.0\%
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	553	63.1\%	323	36.9\%	876	100.0\%
President (1=Obama- Biden; 2=Romney-Ryan; 3= Not sure) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	553	63.1\%	323	36.9\%	876	100.0\%
President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	553	63.1\%	323	36.9\%	876	100.0\%
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	553	63.1\%	323	36.9\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
$\begin{aligned} & \text { Rick Scott's job } \\ & \text { performance (1=Approve; } \\ & \text { 2=Disapprove; } \\ & \text { 3=Unsure)? * Race } \\ & \text { (1=White; 2=African } \\ & \text { American; 3=Asian; } \\ & \text { 4=Other; 5=Refuse) } \end{aligned}$	553	63.1\%	323	36.9\%	876	100.0\%
Gender (1=Male; 2=Female) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	532	60.7\%	344	39.3\%	876	100.0\%
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	536	61.2\%	340	38.8\%	876	100.0\%
$\begin{aligned} & \text { Age Group }(1=18-29 ; \\ & \text { 2=30-39; } 3=40-49 ; 4=50+) \\ & \text { *Race (1=White; } \\ & \text { 2=African American; } \\ & \text { 3=Asian; 4=Other; } \\ & \text { 5=Refuse) } \end{aligned}$	543	62.0\%	333	38.0\%	876	100.0\%
Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	545	62.2\%	331	37.8\%	876	100.0\%

Are you registered to vote (1=yes; 2=no) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)

Crosstab

Crosstab

			Race ...	Total
			5	
Are you registered to vote (1=yes; 2=no)	1	Count	31	553
		\% of Total	5.6\%	100.0\%
Total		Count	31	553
		\% of Total	5.6\%	100.0\%

Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot \cdot$
N of Valid Cases	553

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

| | Value |
| :--- | ---: | ---: |
| Interval by Interval \quad Pearson's R | $\cdot{ }^{\circ}$ |
| N of Valid Cases | 553 |

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * Race (1=White; 2=African America n; 3=Asian; 4=Other; 5=Refuse)

Crosstab

			Race (1=White; 2=African American; 3=Asian; 4=Other;			
			1	2	3	4
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	1	Count	413	50	13	32
		\% of Total	74.7\%	9.0\%	2.4\%	5.8\%
	2	Count	8	4	0	2
		\% of Total	1.4\%	0.7\%	0.0\%	0.4\%
Total		Count	421	54	13	34
		\% of Total	76.1\%	9.8\%	2.4\%	6.1\%

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	8.573^{a}	4	.073
Likelihood Ratio	7.590	4	.108
Linear-by-Linear	.278	1	.598
Association			
N of Valid Cases	553		

a. 4 cells (40.0%) have expected count less than 5 . The minimum expected count is .33 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.022	.038	.527	$.598^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.059	.046	1.397	$.163^{\mathrm{C}}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Ra ce (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)

Crosstab

			Race (1=White; 2=African American; 3=Asian; 4=Other;			
			1	2	3	4
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	163	39	5	18
		\% of Total	29.5\%	7.1\%	0.9\%	3.3\%
	2	Count	190	7	4	6
		\% of Total	34.4\%	1.3\%	0.7\%	1.1\%
	3	Count	68	8	4	10
		\% of Total	12.3\%	1.4\%	0.7\%	1.8\%
Total		Count	421	54	13	34
		\% of Total	76.1\%	9.8\%	2.4\%	6.1\%

Crosstab

			Race ...	Total
			5	
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	12	237
		\% of Total	2.2\%	42.9\%
	2	Count	10	217
		\% of Total	1.8\%	39.2\%
	3	Count	9	99
		\% of Total	1.6\%	17.9\%
Total		Count	31	553
		\% of Total	5.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	38.297^{a}	8	.000
Likelihood Ratio	39.798	8	.000
Linear-by-Linear	.134		1

Association
a. 1 cells (6.7%) have expected count less than 5 . The minimum expected count is 2.33.

Symmetric Measures

			Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.016	.047	.366	$.714^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.060	.047	-1.412	$.159^{\mathrm{c}}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Race (1= White; 2=African American; 3=Asian; 4=Other; 5=Refuse)

Crosstab

			Race (1=White; 2=African American; 3=Asian; 4=Other;			
			1	2	3	4
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	171	37	5	21
		\% of Total	30.9\%	6.7\%	0.9\%	3.8\%
	2	Count	232	15	6	8
		\% of Total	42.0\%	2.7\%	1.1\%	1.4\%
	3	Count	18	2	2	5
		\% of Total	3.3\%	0.4\%	0.4\%	0.9\%
Total		Count	421	54	13	34
		\% of Total	76.1\%	9.8\%	2.4\%	6.1\%

Crosstab

			Race ...	Total
			5	
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	15	249
		\% of Total	2.7\%	45.0\%
	2	Count	13	274
		\% of Total	2.4\%	49.5\%
	3	Count	3	30
		\% of Total	0.5\%	5.4\%
Total		Count	31	553
		\% of Total	5.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	33.712^{a}	8	.000
Likelihood Ratio	32.069	8	.000
Linear-by-Linear	.972	1	.324
Association			
N of Valid Cases	553		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .71 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	${\text { Approx. } \mathrm{T}^{\mathrm{b}}}^{\text {Value }}$	Approx. Sig.	
Interval by Interval	Pearson's R	-.042	.048	-.986	$.325^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.110	.045	-2.602	$.010^{\mathrm{C}}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)

Crosstab

			Race (1=White; 2=African American; 3=Asian; 4=Other;			
			1	2	3	4
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	166	37	6	21
		\% of Total	30.0\%	6.7\%	1.1\%	3.8\%
	2	Count	222	14	6	8
		\% of Total	40.1\%	2.5\%	1.1\%	1.4\%
	3	Count	12	1	0	2
		\% of Total	2.2\%	0.2\%	0.0\%	0.4\%
	4	Count	21	2	1	3
		\% of Total	3.8\%	0.4\%	0.2\%	0.5\%
Total		Count	421	54	13	34
		\% of Total	76.1\%	9.8\%	2.4\%	6.1\%

Crosstab

			Race ...	Total
			5	
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	14	244
		\% of Total	2.5\%	44.1\%
	2	Count	13	263
		\% of Total	2.4\%	47.6\%
	3	Count	1	16
		\% of Total	0.2\%	2.9\%
	4	Count	3	30
		\% of Total	0.5\%	5.4\%
Total		Count	31	553
		\% of Total	5.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	27.791^{a}	12	.006
Likelihood Ratio	28.357	12	.005
Linear-by-Linear	.448	1	.503
Association			
N of Valid Cases	553		

a. 8 cells (40.0%) have expected count less than 5 . The minimum expected count is .38 .

Symmetric Measures

			Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	-.028	.049	-.669	$.504^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.124	.045	-2.929	$.004^{\mathrm{C}}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * Race (1 =White; 2=African American; 3=Asian; 4=Other; 5=Refuse)

Crosstab

			Race (1=White; 2=African American; 3=Asian; 4=Other;			
			1	2	3	4
President (1=ObamaBiden; 2=Romney-Ryan; $3=$ Not sure)	1	Count	172	37	5	21
		\% of Total	31.1\%	6.7\%	0.9\%	3.8\%
	2	Count	232	15	6	9
		\% of Total	42.0\%	2.7\%	1.1\%	1.6\%
	3	Count	17	2	2	4
		\% of Total	3.1\%	0.4\%	0.4\%	0.7\%
Total		Count	421	54	13	34
		\% of Total	76.1\%	9.8\%	2.4\%	6.1\%

Crosstab

			Race ...	Total
			5	
President (1=Obama- Biden; 2=Romney-Ryan; $3=\text { Not sure) }$	1	Count	14	249
		\% of Total	2.5\%	45.0\%
	2	Count	13	275
		\% of Total	2.4\%	49.7\%
	3	Count	4	29
		\% of Total	0.7\%	5.2\%
Total		Count	31	553
		\% of Total	5.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	32.463^{a}	8	.000
Likelihood Ratio	30.598	8	.000
Linear-by-Linear	.413	1	.520
Association			
N of Valid Cases	553		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .68 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	-.027	.049	-.643	$.521^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.100	.046	-2.352	$.019^{\mathrm{C}}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * Race (1 =White; 2=African American; 3=Asian; 4=Other; 5=Refuse)

Crosstab

			Race (1=White; 2=African American; 3=Asian; 4=Other;			
			1	2	3	4
President (1=ObamaClinton; 2=Romney-Ryan; $3=$ Not sure)	1	Count	175	39	6	21
		\% of Total	31.6\%	7.1\%	1.1\%	3.8\%
	2	Count	224	12	6	9
		\% of Total	40.5\%	2.2\%	1.1\%	1.6\%
	3	Count	22	3	1	4
		\% of Total	4.0\%	0.5\%	0.2\%	0.7\%
Total		Count	421	54	13	34
		\% of Total	76.1\%	9.8\%	2.4\%	6.1\%

Crosstab

			Race ...	Total
			5	
President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure)	1	Count	12	253
		\% of Total	2.2\%	45.8\%
	2	Count	13	264
		\% of Total	2.4\%	47.7\%
	3	Count	6	36
		\% of Total	1.1\%	6.5\%
Total		Count	31	553
		\% of Total	5.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	36.041^{a}	8	.000
Likelihood Ratio	34.107	8	.000
Linear-by-Linear	.003	1	.955
Association			
N of Valid Cases	553		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .85 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 002	. 050	-. 056	. $955{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 091	. 046	-2.133	. $033{ }^{\text {c }}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

U.S. Senate (1=Republican Connie Mack; 2=Bill NeIson) * Race (1=Whit e; 2=African American; 3=Asian; 4=Other; 5=Refuse)

Crosstab

			Race (1=White; 2=African American; 3=Asian; 4=Other;			
			1	2	3	4
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	179	7	4	9
		\% of Total	32.4\%	1.3\%	0.7\%	1.6\%
	2	Count	188	35	3	18
		\% of Total	34.0\%	6.3\%	0.5\%	3.3\%
	3	Count	54	12	6	7
		\% of Total	9.8\%	2.2\%	1.1\%	1.3\%
Total		Count	421	54	13	34
		\% of Total	76.1\%	9.8\%	2.4\%	6.1\%

Crosstab

			Race \ldots	
		5	Total	
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	11	210
		\% of Total	2.0%	38.0%
	2	Count	10	254
		\% of Total	1.8%	45.9%
	3	Count	10	89
		\% of Total	1.8%	16.1%
Total	Count	31	553	
		\% of Total	5.6%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	36.854^{a}	8	.000
Likelihood Ratio	36.400	8	.000
Linear-by-Linear	11.928	1	.001
Association			
N of Valid Cases	553		

a. 3 cells (20.0%) have expected count less than 5 . The minimum expected count is 2.09 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.	
Interval by Interval	Pearson's R	.147	.046	3.488	$.001^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.187	.043	4.457	$.000^{\mathrm{C}}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)

Crosstab

			Race (1=White; 2=African American; 3=Asian; 4=Other;			
			1	2	3	4
```Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?```	1	Count	161	15	4	5
		\% of Total	29.1\%	2.7\%	0.7\%	0.9\%
	2	Count	154	21	2	20
		\% of Total	27.8\%	3.8\%	0.4\%	3.6\%
	3	Count	106	18	7	9
		\% of Total	19.2\%	3.3\%	1.3\%	1.6\%
Total		Count	421	54	13	34
		\% of Total	76.1\%	9.8\%	2.4\%	6.1\%

Crosstab

			Race ...	Total
			5	
Rick Scott's job performance (1=Approve;   2=Disapprove;   3=Unsure)?	1	Count	11	196
		\% of Total	2.0\%	35.4\%
	2	Count	13	210
		\% of Total	2.4\%	38.0\%
	3	Count	7	147
		\% of Total	1.3\%	26.6\%
Total		Count	31	553
		\% of Total	5.6\%	100.0\%

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$17.086^{\mathrm{a}}$	8	.029
Likelihood Ratio	17.369	8	.026
Linear-by-Linear	2.276	1	.131
Association			
N of Valid Cases	553		

a. 3 cells $(20.0 \%)$ have expected count less than 5 . The minimum expected count is 3.46 .

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.064	.040	1.510	$.132^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.092	.041	2.160	$.031^{\mathrm{C}}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Gender (1=Male; 2=Female) * Race (1=White; 2=African American; 3= Asian; 4=Other; 5=Refuse)

Crosstab

			Race (1=White; 2=African American; 3=Asian; 4=Other;			
			1	2	3	4
Gender (1=Male; 2=Female)	1	Count	184	17	3	9
		\% of Total	34.6\%	3.2\%	0.6\%	1.7\%
	2	Count	223	36	8	24
		\% of Total	41.9\%	6.8\%	1.5\%	4.5\%
Total		Count	407	53	11	33
		\% of Total	76.5\%	10.0\%	2.1\%	6.2\%

Crosstab

			Race ...	Total
			5	
Gender (1=Male; 2=Female)	1	Count	13	226
		\% of Total	2.4\%	42.5\%
	2	Count	15	306
		\% of Total	2.8\%	57.5\%
Total		Count	28	532
		\% of Total	5.3\%	100.0\%

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$7.931^{\mathrm{a}}$	4	.094
Likelihood Ratio	8.208	4	.084
Linear-by-Linear	2.256	1	.133
Association			
N of Valid Cases	532		

a. 1 cells $(10.0 \%)$ have expected count less than 5 . The minimum expected count is 4.67 .

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.065	.043	1.504	$.133^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.093	.042	2.148	$.032^{\mathrm{C}}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 =Other/No affiliation) * Race (1=White; 2=African American; 3=Asian; 4 =Other; 5=Refuse)

Crosstab


Crosstab

			Race ...	Total
			5	
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	1	Count	3	143
		\% of Total	0.6\%	26.7\%
	2	Count	12	247
		\% of Total	2.2\%	46.1\%
	3	Count	2	35
		\% of Total	0.4\%	6.5\%
	4	Count	0	6
		\% of Total	0.0\%	1.1\%
	5	Count	12	105
		\% of Total	2.2\%	19.6\%
Total		Count	29	536
		\% of Total	5.4\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$62.796^{\mathrm{a}}$	16	.000
Likelihood Ratio	43.224	16	.000
Linear-by-Linear	8.085	1	.004
Association			
N of Valid Cases	536		

a. 11 cells ( $44.0 \%$ ) have expected count less than 5 . The minimum expected count is .12 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 123	. 047	2.863	. $004{ }^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	. 120	. 045	2.786	. $006{ }^{\text {c }}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+) * Race (1=White; 2=Afri can American; 3=Asian; 4=Other; 5=Refuse)

Crosstab

			Race (1=White; 2=African American; 3=Asian; 4=Other;			
			1	2	3	4
$\begin{aligned} & \text { Age Group }(1=18-29 ; \\ & 2=30-39 ; 3=40-49 ; 4=50+) \end{aligned}$	1	Count	22	7	1	5
		\% of Total	4.1\%	1.3\%	0.2\%	0.9\%
	2	Count	44	15	2	14
		\% of Total	8.1\%	2.8\%	0.4\%	2.6\%
	3	Count	94	21	3	9
		\% of Total	17.3\%	3.9\%	0.6\%	1.7\%
	4	Count	253	11	7	6
		\% of Total	46.6\%	2.0\%	1.3\%	1.1\%
Total		Count	413	54	13	34
		\% of Total	76.1\%	9.9\%	2.4\%	6.3\%

Crosstab

			Race $\ldots$	
		5	Total	
Age Group (1=18-29;   2=30-39; 3=40-49; 4=50+)	1	Count	1	36
		\% of Total	$0.2 \%$	$6.6 \%$
	2	Count	7	82
		\% of Total	$1.3 \%$	$15.1 \%$
	3	Count	9	136
		\% of Total	$1.7 \%$	$25.0 \%$
	4	Count	12	289
		\% of Total	$2.2 \%$	$53.2 \%$
Total		Count	29	543
		\% of Total	$5.3 \%$	$100.0 \%$

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$66.435^{\mathrm{a}}$	12	.000
Likelihood Ratio	64.780	12	.000
Linear-by-Linear	25.925	1	.000
Association			
N of Valid Cases	543		

a. 7 cells (35.0\%) have expected count less than 5 . The minimum expected count is .86 .

Symmetric Measures

		Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.	
Interval by Interval	Pearson's R	-.219	.043	-5.213	$.000^{\mathrm{c}}$
Ordinal by Ordinal	Spearman Correlation	-.290	.042	-7.035	$.000^{\mathrm{c}}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Race (1=White; 2=Africa n American; 3=Asian; 4=Other; 5=Refuse)

Crosstab

			Race (1=White; 2=African American; 3=Asian; 4=Other;			
			1	2	3	4
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	18	6	3	19
		\% of Total	3.3\%	1.1\%	0.6\%	3.5\%
	2	Count	387	43	9	11
		\% of Total	71.0\%	7.9\%	1.7\%	2.0\%
	3	Count	10	5	1	4
		\% of Total	1.8\%	0.9\%	0.2\%	0.7\%
Total		Count	415	54	13	34
		\% of Total	76.1\%	9.9\%	2.4\%	6.2\%

Crosstab

			Race ...	Total
			5	
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	2	48
		\% of Total	0.4\%	8.8\%
	2	Count	15	465
		\% of Total	2.8\%	85.3\%
	3	Count	12	32
		\% of Total	2.2\%	5.9\%
Total		Count	29	545
		\% of Total	5.3\%	100.0\%

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$190.974^{\mathrm{a}}$	8	.000
Likelihood Ratio	114.764	8	.000
Linear-by-Linear	.015	1	.902
Association			
N of Valid Cases	545		

a. 8 cells (53.3\%) have expected count less than 5 . The minimum expected count is .76 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 005	. 076	-. 122	. $903{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 042	. 070	-. 976	. $329^{\text {c }}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## CROSSTABS

/TABLES=Areyouregisteredtovote1yes2no Howlikelyareyoutovoteinthisyearspresi dentialelections1likely2som Party1Democrat2Republican3Independentorminorparty
Presidentialvote10bama2Romney30therUnsure President10bama2Romney3GaryJohnson 4NotSure
President10bamaBiden2RomneyRyan3Notsure President10bamaClinton2RomneyRyan3Not sure U.S.Senate1RepublicanConnieMack2BillNelson Gender1Male2Female ReligiousA ffiliation1Catholic2Protestant3Jewish4Muslim50therNoaf AgeGroup11829230393404 9450
HispanicorLatino1Yes2No3Unsure Race1White2AfricanAmerican3Asian40ther5Refuse
BY RickScottsjobperformance1Approve2Disapprove3Unsure
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ CORR
/CELLS=COUNT TOTAL
/COUNT ROUND CELL.

## Crosstabs

[DataSet1]

## Warnings

> No measures of association are computed for the crosstabulation of Are you registered to vote (1=yes; 2=no) * Rick Scott's job performance (1=Approve; 2=Disapprove; $3=$ Unsure)?. At least one variable in each 2-way table upon which measures of association are computed is a constant.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Are you registered to vote (1=yes; 2=no) * Rick Scott's job performance (1=Approve;   2=Disapprove;   3=Unsure)?	572	65.3\%	304	34.7\%	876	100.0\%
How likely are you to vote in this year's presidential elections (1=likely;   2=somewhat likely; 3=not likely) * Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	572	65.3\%	304	34.7\%	876	100.0\%
Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	572	65.3\%	304	34.7\%	876	100.0\%
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Rick Scott's job performance (1=Approve;   2=Disapprove; 3=Unsure)?	572	65.3\%	304	34.7\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
$\begin{aligned} & \text { President (1=Obama; } \\ & \text { 2=Romney; 3=Gary } \\ & \text { Johnson; 4=Not Sure) * } \\ & \text { Rick Scott's job } \\ & \text { performance (1=Approve; } \\ & \text { 2=Disapprove; } \\ & \text { 3=Unsure)? } \end{aligned}$	572	65.3\%	304	34.7\%	876	100.0\%
President (1=Obama-   Biden; 2=Romney-Ryan;   3= Not sure) * Rick Scott's   job performance   (1=Approve;   2=Disapprove;   3=Unsure)?	572	65.3\%	304	34.7\%	876	100.0\%
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure) * Rick Scott's job performance (1=Approve;   2=Disapprove;   3=Unsure)?	572	65.3\%	304	34.7\%	876	100.0\%
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	572	65.3\%	304	34.7\%	876	100.0\%
$\begin{aligned} & \text { Gender (1=Male; } \\ & \text { 2=Female) * Rick Scott's } \\ & \text { job performance } \\ & \text { (1=Approve; } \\ & \text { 2=Disapprove; } \\ & \text { 3=Unsure)? } \end{aligned}$	532	60.7\%	344	39.3\%	876	100.0\%
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	536	61.2\%	340	38.8\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
$\begin{aligned} & \text { Age Group (1=18-29; } \\ & 2=30-39 ; 3=40-49 ; 4=50+) \\ & \text { *Rick Scott's job } \\ & \text { performance (1=Approve; } \\ & \text { 2=Disapprove; } \\ & 3=\text { Unsure)? } \end{aligned}$	543	62.0\%	333	38.0\%	876	100.0\%
Hispanic or Latino (1=Yes;   2=No; 3=Unsure) * Rick   Scott's job performance   (1=Approve;   2=Disapprove;   3=Unsure)?	545	62.2\%	331	37.8\%	876	100.0\%
Race (1=White; 2=African American; 3=Asian; 4=Other; $5=$ Refuse) * Rick Scott's job performance (1=Approve;   2=Disapprove;   3=Unsure)?	553	63.1\%	323	36.9\%	876	100.0\%

Are you registered to vote (1=yes; 2=no) * Rick Scott's job performanc e (1=Approve; 2=Disapprove; 3=Unsure)?

Crosstab

		Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?		
		1	2	3
Are you registered to vote (1=yes; 2=no)	Count \% of Total	$\begin{array}{r} 200 \\ 35.0 \% \end{array}$	$\begin{array}{r} 216 \\ 37.8 \% \end{array}$	$\begin{array}{r} 156 \\ 27.3 \% \end{array}$
Total	Count   \% of Total	$\begin{array}{r} 200 \\ 35.0 \% \end{array}$	$\begin{array}{r} 216 \\ 37.8 \% \end{array}$	$\begin{array}{r} 156 \\ 27.3 \% \end{array}$


	Crosstab		
Are you registered to vote   (1=yes; 2=no)	1	Count	572
Total		\% of Total	$100.0 \%$

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot$
$N$ of Valid Cases	572

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval $\quad$ Pearson's R	$\cdot{ }^{a}$
N of Valid Cases	572

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

## How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * Rick Scott's job performance (1=A pprove; 2=Disapprove; 3=Unsure)?

Crosstab

			Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?		
			1	2	3
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	1	Count	199	210	148
		\% of Total	34.8\%	36.7\%	25.9\%
	2	Count	1	6	8
		\% of Total	0.2\%	1.0\%	1.4\%
Total		Count	200	216	156
		\% of Total	35.0\%	37.8\%	27.3\%

Crosstab

			Total
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	1	Count	557
		\% of Total	97.4\%
	2	Count	15
		\% of Total	2.6\%
Total		Count	572
		\% of Total	100.0\%

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$7.384^{\mathrm{a}}$	2	.025
Likelihood Ratio	8.301	2	.016
Linear-by-Linear	7.371	1	.007
Association			
N of Valid Cases	572		

a. 1 cells (16.7\%) have expected count less than 5 . The minimum expected count is 4.09 .

Symmetric Measures

		Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.	
Interval by Interval	Pearson's R	.114	.036	2.730	$.007^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.114	.035	2.728	$.007^{\mathrm{C}}$
N of Valid Cases		572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Ri ck Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?

Crosstab

			Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?		
			1	2	3
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	16	156	74
		\% of Total	2.8\%	27.3\%	12.9\%
	2	Count	148	23	51
		\% of Total	25.9\%	4.0\%	8.9\%
	3	Count	36	37	31
		\% of Total	6.3\%	6.5\%	5.4\%
Total		Count	200	216	156
		\% of Total	35.0\%	37.8\%	27.3\%

Crosstab

			Total
Party (1=Democrat;   2=Republican;   3=Independent or minor   party)	1	Count	246
	2	\% of Total	$43.0 \%$
		Count	222
	3	Count Total	$38.8 \%$
Total		\% of Total	$10.2 \%$

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$210.406^{\mathrm{a}}$	4	.000
Likelihood Ratio	236.829	4	.000
Linear-by-Linear	28.115	1	.000
Association			
N of Valid Cases	572		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 28.36.

Symmetric Measures

		Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.	
Interval by Interval	Pearson's R	-.222	.039	-5.433	$.00 \mathrm{C}^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.267	.040	-6.606	$.000^{\mathrm{C}}$
N of Valid Cases		572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Rick Scott' s job performance (1=Approve; 2=Disapprove; 3=Unsure)?

Crosstab


Crosstab

			Total
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	260
		\% of Total	45.5\%
	2	Count	281
		\% of Total	49.1\%
	3	Count	31
		\% of Total	5.4\%
Total		Count	572
		\% of Total	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$272.430^{\mathrm{a}}$	4	.000
Likelihood Ratio	315.528	4	.000
Linear-by-Linear	44.027	1	.000
Association			
N of Valid Cases	572		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 8.45 .

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	-. 278	. 041	-6.901	. $000{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	-. 332	. 043	-8.397	$.000^{\text {c }}$
N of Valid Cases	572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?

Crosstab


Crosstab

		Total	
President (1=Obama;   2=Romney; 3=Gary   Johnson; 4=Not Sure)	1	Count	255
		\% of Total	$44.6 \%$
	2	Count	270
		\% of Total	$47.2 \%$
	3	Count	17
		\% of Total	$3.0 \%$
Total		Count	30
		\% of Total	$5.2 \%$

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$280.964^{\mathrm{a}}$	6	.000
Likelihood Ratio	324.841	6	.000
Linear-by-Linear	16.012	1	.000
Association			
N of Valid Cases	572		

a. 1 cells ( $8.3 \%$ ) have expected count less than 5 . The minimum expected count is 4.64 .

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	-.167	.043	-4.055	$.000^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.294	.043	-7.343	$.000^{\mathrm{C}}$
N of Valid Cases		572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * Rick Scot t's job performance (1=Approve; 2=Disapprove; 3=Unsure)?

Crosstab

			Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?		
			1	2	3
President (1=Obama-   Biden; 2=Romney-Ryan; $3=\text { Not sure) }$	1	Count	10	180	68
		\% of Total	1.7\%	31.5\%	11.9\%
	2	Count	184	26	72
		\% of Total	32.2\%	4.5\%	12.6\%
	3	Count	6	10	16
		\% of Total	1.0\%	1.7\%	2.8\%
Total		Count	200	216	156
		\% of Total	35.0\%	37.8\%	27.3\%

## Crosstab

President (1=Obama-   Biden; 2=Romney-Ryan;   3= Not sure)	1	Count	258
		\% of Total	$45.1 \%$
	2	Count	282
		\% of Total	$49.3 \%$
Total		Count	32
		\% of Total	$5.6 \%$

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$285.323^{\mathrm{a}}$	4	.000
Likelihood Ratio	327.245	4	.000
Linear-by-Linear	34.493	1	.000
Association			
N of Valid Cases	572		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 8.73.

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	-.246	.041	-6.054	$.00 \mathrm{C}^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.308	.044	-7.721	$.000^{\mathrm{C}}$
N of Valid Cases		572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * Rick Scot t's job performance (1=Approve; 2=Disapprove; 3=Unsure)?

Crosstab

			Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?		
			1	2	3
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure)	1	Count	15	179	70
		\% of Total	2.6\%	31.3\%	12.2\%
	2	Count	178	24	68
		\% of Total	31.1\%	4.2\%	11.9\%
	3	Count	7	13	18
		\% of Total	1.2\%	2.3\%	3.1\%
Total		Count	200	216	156
		\% of Total	35.0\%	37.8\%	27.3\%

Crosstab

	Total		
President (1=Obama-   3=Not sure)	1	Count	264
		\% of Total	$46.2 \%$
	2	Count	270
		\% of Total	$47.2 \%$
	3	Count	38
		\% of Total	$6.6 \%$
Total		Count	572
		\% of Total	$100.0 \%$

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$270.680^{\mathrm{a}}$	4	.000
Likelihood Ratio	304.922	4	.000
Linear-by-Linear	28.686	1	.000
Association			
N of Valid Cases	572		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 10.36 .

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. T ${ }^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	-.224	.042	-5.491	$.000^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.289	.044	-7.196	$.000^{\mathrm{C}}$
N of Valid Cases		572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Rick Scott's j ob performance (1=Approve; 2=Disapprove; 3=Unsure)?

Crosstab

			Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?		
			1	2	3
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	146	25	45
		\% of Total	25.5\%	4.4\%	7.9\%
	2	Count	26	168	71
		\% of Total	4.5\%	29.4\%	12.4\%
	3	Count	28	23	40
		\% of Total	4.9\%	4.0\%	7.0\%
Total		Count	200	216	156
		\% of Total	35.0\%	37.8\%	27.3\%

Crosstab

			Total
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	216
		\% of Total	37.8\%
	2	Count	265
		\% of Total	46.3\%
	3	Count	91
		\% of Total	15.9\%
Total		Count	572
		\% of Total	100.0\%

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$215.868^{\mathrm{a}}$	4	.000
Likelihood Ratio	227.136	4	.000
Linear-by-Linear	61.884	1	.000
Association			
N of Valid Cases	572		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 24.82 .

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.329	.044	8.324	$.000^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.356	.044	9.100	$.000^{\mathrm{C}}$
N of Valid Cases		572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Gender (1=Male; 2=Female) * Rick Scott's job performance (1=Approve ; 2=Disapprove; 3=Unsure)?

Crosstab

			Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?		
			1	2	3
Gender (1=Male; 2=Female)	1	Count	98	80	48
		\% of Total	18.4\%	15.0\%	9.0\%
	2	Count	92	125	89
		\% of Total	17.3\%	23.5\%	16.7\%
Total		Count	190	205	137
		\% of Total	35.7\%	38.5\%	25.8\%

Crosstab

			Total
Gender (1=Male;   2=Female)	1	Count	226
		\% of Total	$42.5 \%$
	2	Count	306
		\% of Total	$57.5 \%$
Total	Count	532	
		\% of Total	$100.0 \%$

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$10.546^{\mathrm{a}}$	2	.005
Likelihood Ratio	10.533	2	.005
Linear-by-Linear	9.592	1	.002
Association			
N of Valid Cases	532		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 58.20.

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.134	.043	3.122	$.00 \mathrm{c}^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.136	.043	3.163	$.002^{\mathrm{C}}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 =Other/No affiliation) * Rick Scott's job performance (1=Approve; 2=Di sapprove; 3=Unsure)?

Crosstab

			Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?		
			1	2	3
Religious Affiliation (1=Catholic; 2=Protestant;	1	Count \% of Total	$\begin{array}{r} 50 \\ 9.3 \% \end{array}$	$\begin{array}{r} 52 \\ 9.7 \% \end{array}$	$\begin{array}{r} 41 \\ 7.6 \% \end{array}$
5=Other/No affiliation)	2	Count   \% of Total	$\begin{array}{r} 114 \\ 21.3 \% \end{array}$	$\begin{array}{r} 75 \\ 14.0 \% \end{array}$	$\begin{array}{r} 58 \\ 10.8 \% \end{array}$
	3	Count   \% of Total	8 $1.5 \%$	$\begin{array}{r} 17 \\ 3.2 \% \end{array}$	10 $1.9 \%$
	4	Count   \% of Total	1 $0.2 \%$	1 $0.2 \%$	4 $0.7 \%$
	5	Count \% of Total	$\begin{array}{r} 17 \\ 3.2 \% \end{array}$	$\begin{array}{r} 60 \\ 11.2 \% \end{array}$	28 $5.2 \%$
Total		Count \% of Total	$\begin{array}{r} 190 \\ 35.4 \% \end{array}$	$\begin{array}{r} 205 \\ 38.2 \% \end{array}$	$\begin{array}{r} 141 \\ 26.3 \% \end{array}$

Crosstab

			Total
Religious Affiliation (1=Catholic; 2=Protestant;   3=Jewish; 4=Muslim;   5=Other/No affiliation)	1	Count   \% of Total	$\begin{array}{r} 143 \\ 26.7 \% \end{array}$
	2	Count \% of Total	$\begin{array}{r} 247 \\ 46.1 \% \end{array}$
	3	Count \% of Total	$\begin{array}{r} 35 \\ 6.5 \% \end{array}$
	4	Count   \% of Total	6 $1.1 \%$
	5	Count \% of Total	$\begin{array}{r} 105 \\ 19.6 \% \end{array}$
Total		Count   \% of Total	$\begin{array}{r} 536 \\ 100.0 \% \end{array}$

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$41.639^{\mathrm{a}}$	8	.000
Likelihood Ratio	42.149	8	.000
Linear-by-Linear	7.596	1	.006
Association			
N of Valid Cases	536		

a. 3 cells ( $20.0 \%$ ) have expected count less than 5 . The minimum expected count is 1.58 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 119	. 039	2.773	. $006{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 087	. 041	2.029	. $043{ }^{\text {c }}$
$N$ of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+) * Rick Scott's job perfo rmance (1=Approve; 2=Disapprove; 3=Unsure)?

Crosstab					
			Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?		
			1	2	3
Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+)	1	Count	13	10	13
		\% of Total	2.4\%	1.8\%	2.4\%
	2	Count	24	35	23
		\% of Total	4.4\%	6.4\%	4.2\%
	3	Count	42	61	33
		\% of Total	7.7\%	11.2\%	6.1\%
	4	Count	112	102	75
		\% of Total	20.6\%	18.8\%	13.8\%
Total		Count	191	208	144
		\% of Total	35.2\%	38.3\%	26.5\%

Crosstab

			Total
$\begin{aligned} & \text { Age Group (1=18-29; } \\ & 2=30-39 ; 3=40-49 ; 4=50+) \end{aligned}$	1	Count	36
		\% of Total	6.6\%
	2	Count	82
		\% of Total	15.1\%
	3	Count	136
		\% of Total	25.0\%
	4	Count	289
		\% of Total	53.2\%
Total		Count	543
		\% of Total	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$7.862^{\mathrm{a}}$	6	.248
Likelihood Ratio	7.823	6	.251
Linear-by-Linear	2.011	1	.156
Association			
N of Valid Cases	543		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 9.55 .

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	-.061	.044	-1.420	$.156^{\mathrm{c}}$
Ordinal by Ordinal	Spearman Correlation	-.063	.043	-1.471	$.142^{\mathrm{c}}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Rick Scott's job perform ance (1=Approve; 2=Disapprove; 3=Unsure)?

Crosstab

			Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?		
			1	2	3
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	17	18	13
		\% of Total	3.1\%	3.3\%	2.4\%
	2	Count	165	179	121
		\% of Total	30.3\%	32.8\%	22.2\%
	3	Count	10	12	10
		\% of Total	1.8\%	2.2\%	1.8\%
Total		Count	192	209	144
		\% of Total	35.2\%	38.3\%	26.4\%

Crosstab

		Total	
Hispanic or Latino (1=Yes;   2=No; 3=Unsure)	1		48
		\% of Total	$8.8 \%$
	2	Count	465
		\% of Total	$85.3 \%$
	3	Count	32
		\% of Total	$5.9 \%$
Total		Count	545
		\% of Total	$100.0 \%$

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$.489^{\mathrm{a}}$	4	.975
Likelihood Ratio	.479	4	.976
Linear-by-Linear	.138	1	.710
Association			
N of Valid Cases	545		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 8.46.

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.016	.043	.372	$.710^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.016	.043	.364	$.716^{\mathrm{C}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Ri ck Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?

Crosstab

			Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?		
			1	2	3
Race (1=White; 2=African American; 3=Asian;	1	Count \% of Total	$\begin{array}{r} 161 \\ 29.1 \% \end{array}$	$\begin{array}{r} 154 \\ 27.8 \% \end{array}$	$\begin{array}{r} 106 \\ 19.2 \% \end{array}$
	2	Count   \% of Total	$\begin{array}{r} 15 \\ 2.7 \% \end{array}$	$\begin{array}{r} 21 \\ 3.8 \% \end{array}$	$\begin{array}{r} 18 \\ 3.3 \% \end{array}$
	3	Count   \% of Total	$\begin{array}{r} 4 \\ 0.7 \% \end{array}$	$\begin{array}{r} 2 \\ 0.4 \% \end{array}$	$\begin{array}{r} 7 \\ 1.3 \% \end{array}$
	4	Count   \% of Total	$\begin{array}{r} 5 \\ 0.9 \% \end{array}$	$\begin{array}{r} 20 \\ 3.6 \% \end{array}$	9 $1.6 \%$
	5	Count   \% of Total	$\begin{array}{r} 11 \\ 2.0 \% \end{array}$	$\begin{array}{r} 13 \\ 2.4 \% \end{array}$	7 $1.3 \%$
Total		Count   \% of Total	$\begin{array}{r} 196 \\ 35.4 \% \end{array}$	$\begin{array}{r} 210 \\ 38.0 \% \end{array}$	$\begin{array}{r} 147 \\ 26.6 \% \end{array}$



## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$17.086^{\mathrm{a}}$	8	.029
Likelihood Ratio	17.369	8	.026
Linear-by-Linear	2.276	1	.131
Association			
N of Valid Cases	553		

a. 3 cells $(20.0 \%)$ have expected count less than 5 . The minimum expected count is 3.46 .

Symmetric Measures

		Value	Asymp. Std.   Error $^{\mathrm{a}}$	Approx. T ${ }^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.064	.040	1.510	$.132^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.092	.041	2.160	$.031^{\mathrm{C}}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

# /TABLES=Areyouregisteredtovote1yes2no Howlikelyareyoutovoteinthisyearspresi dentialelections1likely2som Party1Democrat2Republican3Independentorminorparty Presidentialvote10bama2Romney30therUnsure President10bama2Romney3GaryJohnson 4NotSure <br> President10bamaBiden2RomneyRyan3Notsure President10bamaClinton2RomneyRyan3Not sure Gender1Male2Female ReligiousAffiliation1Catholic2Protestant3Jewish4Musli m50therNoaf AgeGroup118292303934049450 HispanicorLatino1Yes2No3Unsure Race1White2AfricanAmerican3Asian40ther5Refuse RickScottsjobperformance1Approv e2Disapprove3Unsure BY U.S.Senate1RepublicanConnieMack2BillNelson <br> /FORMAT=AVALUE TABLES <br> /STATISTICS=CHISQ CORR <br> /CELLS=COUNT TOTAL <br> /COUNT ROUND CELL. 

## Crosstabs

[DataSet1]

## Warnings

[^0]Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Are you registered to vote (1=yes; 2=no) * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	582	66.4\%	294	33.6\%	876	100.0\%
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely) * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	582	66.4\%	294	33.6\%	876	100.0\%
Party (1=Democrat; 2=Republican; 3=Independent or minor party) * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	582	66.4\%	294	33.6\%	876	100.0\%
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	582	66.4\%	294	33.6\%	876	100.0\%
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * U.   S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	582	66.4\%	294	33.6\%	876	100.0\%
President (1=Obama-   Biden; 2=Romney-Ryan;   3= Not sure) * U.S.   Senate (1=Republican   Connie Mack; 2=Bill   Nelson)	582	66.4\%	294	33.6\%	876	100.0\%
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure) * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	582	66.4\%	294	33.6\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Gender (1=Male; 2=Female) * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	532	60.7\%	344	39.3\%	876	100.0\%
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * U. S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	536	61.2\%	340	38.8\%	876	100.0\%
Age Group (1=18-29; $2=30-39 ; 3=40-49 ; 4=50+)$   * U.S. Senate   (1=Republican Connie   Mack; 2=Bill Nelson)	543	62.0\%	333	38.0\%	876	100.0\%
Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * U.S.   Senate (1=Republican Connie Mack; 2=Bill Nelson)	545	62.2\%	331	37.8\%	876	100.0\%
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	553	63.1\%	323	36.9\%	876	100.0\%
Rick Scott's job performance (1=Approve; 2=Disapprove;   3=Unsure)? * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	572	65.3\%	304	34.7\%	876	100.0\%

Are you registered to vote (1=yes; 2=no) * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)

Crosstab

		U.S. Senate (1=Republican Connie Mack; 2=Bill		
		Nelson)		
		1		2
Are you registered to vote   (1=yes; 2=no)	1	Count	220	268
Total	\% of Total	$37.8 \%$	$46.0 \%$	94
		Count	220	268

Crosstab

Are you registered to vote   (1=yes; 2=no)	1	Count   \% of Total	582   $100.0 \%$
Total		Count	582
		\% of Total	$100.0 \%$

Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot a$
N of Valid Cases	582

a. No statistics are computed because Are you registered to vote (1=yes; $2=n o$ ) is a constant.

Symmetric Measures

	Value
Interval by Interval $\quad$ Pearson's R	$\cdot$
$N$ of Valid Cases	582

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

## How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)

Crosstab


Crosstab

		Total	
How likely are you to vote   in this year's presidential   elections (1=likely;	1	Count	566
2=somewhat likely; 3=not   likely)	2	\% of Total	$97.3 \%$
Total		Count	16
		Count	$2.7 \%$

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$19.947^{\mathrm{a}}$	2	.000
Likelihood Ratio	14.716	2	.001
Linear-by-Linear	14.259		1

a. 1 cells $(16.7 \%)$ have expected count less than 5 . The minimum expected count is 2.58 .

Symmetric Measures

		Value	Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.157	.045	3.820	$.00 \mathrm{C}^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.146	.042	3.562	$.000^{\mathrm{C}}$
N of Valid Cases		582			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Party (1=Democrat; 2=Republican; 3=Independent or minor party) * U.S . Senate (1=Republican Connie Mack; 2=Bill Nelson)

Crosstab

			U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)		
			1	2	3
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	30	193	29
		\% of Total	5.2\%	33.2\%	5.0\%
	2	Count	161	32	33
		\% of Total	27.7\%	5.5\%	5.7\%
	3	Count	29	43	32
		\% of Total	5.0\%	7.4\%	5.5\%
Total		Count	220	268	94
		\% of Total	37.8\%	46.0\%	16.2\%

Crosstab

Party (1=Democrat;   2=Republican;   3=Independent or minor   party)	1	Count	252
	2	\% of Total	$43.3 \%$
		Count	226
	3	Count Total	$38.8 \%$
Total		\% of Total	$17.9 \%$

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$233.167^{\mathrm{a}}$	4	.000
Likelihood Ratio	243.655	4	.000
Linear-by-Linear	5.005	1	.025
Association			
N of Valid Cases	582		

a. 0 cells ( $0.0 \%$ ) have expected count less than 5 . The minimum expected count is 16.80 .

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. T ${ }^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	-.093	.042	-2.245	$.025^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.174	.044	-4.260	$.000^{\mathrm{C}}$
N of Valid Cases		582			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * U.S. Senat e (1=Republican Connie Mack; 2=Bill Nelson)

Crosstab

			U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)		
			1	2	3
Presidential vote (1=Obama; 2=Romney;   3-Other/Unsure)	1	Count \% of Total	$\begin{array}{r} 22 \\ 3.8 \% \end{array}$	$\begin{array}{r} 211 \\ 36.3 \% \end{array}$	$\begin{array}{r} 31 \\ 5.3 \% \end{array}$
ure)	2	Count   \% of Total	$\begin{array}{r} 191 \\ 32.8 \% \end{array}$	$\begin{array}{r} 49 \\ 8.4 \% \end{array}$	$\begin{array}{r} 46 \\ 7.9 \% \end{array}$
	3	Count   \% of Total	$\begin{array}{r} 7 \\ 1.2 \% \end{array}$	8 $1.4 \%$	$\begin{array}{r} 17 \\ 2.9 \% \end{array}$
Total		Count   \% of Total	$\begin{array}{r} 220 \\ 37.8 \% \end{array}$	$\begin{array}{r} 268 \\ 46.0 \% \end{array}$	$\begin{array}{r} 94 \\ 16.2 \% \end{array}$

Crosstab

			Total
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	264
		\% of Total	45.4\%
	2	Count	286
		\% of Total	49.1\%
	3	Count	32
		\% of Total	5.5\%
Total		Count	582
		\% of Total	100.0\%

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$277.408^{\mathrm{a}}$	4	.000
Likelihood Ratio	289.574	4	.000
Linear-by-Linear	24.128	1	.000
Association	582		
N of Valid Cases			

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 5.17.

Symmetric Measures

		Asymp. Std.   Error $^{\mathrm{a}}$	${\text { Approx. } \mathrm{T}^{\mathrm{b}}}^{\text {Value }}$	Approx. Sig.	
Interval by Interval	Pearson's R	-.204	.047	-5.013	$.000^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.306	.046	-7.747	$.000^{\mathrm{C}}$
N of Valid Cases		582			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)

Crosstab

			U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)		
			1	2	3
President (1=Obama; 2=Romney; 3=Gary	1	Count \% of Total	$\begin{array}{r} 21 \\ 3.6 \% \end{array}$	$\begin{array}{r} 208 \\ 35.7 \% \end{array}$	$\begin{array}{r} 30 \\ 5.2 \% \end{array}$
Johnson, 4=Not Sure)	2	Count \% of Total	$\begin{array}{r} 184 \\ 31.6 \% \end{array}$	$\begin{array}{r} 47 \\ 8.1 \% \end{array}$	$\begin{array}{r} 43 \\ 7.4 \% \end{array}$
	3	Count   \% of Total	$\begin{array}{r} 10 \\ 1.7 \% \end{array}$	$\begin{array}{r} 4 \\ 0.7 \% \end{array}$	$\begin{array}{r} 4 \\ 0.7 \% \end{array}$
	4	Count \% of Total	5 $0.9 \%$	9 $1.5 \%$	$\begin{array}{r}17 \\ 2.9 \% \\ \hline\end{array}$
Total		Count   \% of Total	$\begin{array}{r} 220 \\ 37.8 \% \end{array}$	$\begin{array}{r} 268 \\ 46.0 \% \end{array}$	$\begin{array}{r} 94 \\ 16.2 \% \end{array}$

Crosstab

President (1=Obama;   2=Romney; 3=Gary   Johnson; 4=Not Sure)	1	Count	Total
		\% of Total	$44.5 \%$
		Count	274
		\% of Total	$47.1 \%$
	3	Count	18
		\% of Total	$3.1 \%$
Total		Count	31
		\% of Total	$5.3 \%$

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$280.602^{\mathrm{a}}$	6	.000
Likelihood Ratio	292.112	6	.000
Linear-by-Linear	5.185	1	.023
Association			
N of Valid Cases	582		

a. 1 cells ( $8.3 \%$ ) have expected count less than 5 . The minimum expected count is 2.91.

Symmetric Measures

		Value	Asymp. Std.   Error $^{\text {a }}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	-.094	.050	-2.285	$.023^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.285	.046	-7.161	$.000^{\mathrm{C}}$
N of Valid Cases		582			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * U.S. Sena te (1=Republican Connie Mack; 2=Bill Nelson)

Crosstab

			U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)		
			1	2	3
President (1=Obama-   Biden; 2=Romney-Ryan;   3= Not sure)	1	Count	21	212	29
		\% of Total	3.6\%	36.4\%	5.0\%
	2	Count	193	50	44
		\% of Total	33.2\%	8.6\%	7.6\%
	3	Count	6	6	21
		\% of Total	1.0\%	1.0\%	3.6\%
Total		Count	220	268	94
		\% of Total	37.8\%	46.0\%	16.2\%

Crosstab

		Total	
President (1=Obama-   Biden; 2=Romney-Ryan;   3= Not sure)	1	Count	262
		\% of Total	$45.0 \%$
	2	Count	287
		\% of Total	$49.3 \%$
	3	Count	33
		\% of Total	$5.7 \%$
Total		Count	582
		\% of Total	$100.0 \%$

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$306.880^{\mathrm{a}}$	4	.000
Likelihood Ratio	310.189	4	.000
Linear-by-Linear	17.928	1	.000
Association			
N of Valid Cases	582		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 5.33.

Symmetric Measures

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * U.S. Sena te (1=Republican Connie Mack; 2=Bill Nelson)

Crosstab

			U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)		
			1	2	3
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure)	1	Count	23	212	33
		\% of Total	4.0\%	36.4\%	5.7\%
	2	Count	189	46	41
		\% of Total	32.5\%	7.9\%	7.0\%
	3	Count	8	10	20
		\% of Total	1.4\%	1.7\%	3.4\%
Total		Count	220	268	94
		\% of Total	37.8\%	46.0\%	16.2\%

Crosstab

President (1=Obama-   Clinton; 2=Romney-Ryan;   3=Not sure)	1	Count	268
		\% of Total	$46.0 \%$
	2	Count	276
		\% of Total	$47.4 \%$
Total		Count	38
		\% of Total	$6.5 \%$

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$284.656^{\mathrm{a}}$	4	.000
Likelihood Ratio	294.255	4	.000
Linear-by-Linear	21.518	1	.000
Association			
N of Valid Cases	582		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 6.14.

Symmetric Measures

		Asymp. Std.   Error $^{\mathrm{a}}$	${\text { Approx. } \mathrm{T}^{\mathrm{b}}}^{\text {Value }}$	Approx. Sig.	
Interval by Interval	Pearson's R	-.192	.047	-4.723	$.000^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.301	.047	-7.604	$.000^{\mathrm{C}}$
N of Valid Cases		582			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Gender (1=Male; 2=Female) * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)

Crosstab

			U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)		
			1	2	3
Gender (1=Male; 2=Female)	1	Count	103	97	26
		\% of Total	19.4\%	18.2\%	4.9\%
	2	Count	102	147	57
		\% of Total	19.2\%	27.6\%	10.7\%
Total		Count	205	244	83
		\% of Total	38.5\%	45.9\%	15.6\%

## Crosstab

Gender (1=Male;   2=Female)	1	Count	226
		\% of Total	$42.5 \%$
	2	Count	306
		\% of Total	$57.5 \%$
Total		Count	532
		\% of Total	$100.0 \%$

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$10.026^{\mathrm{a}}$	2	.007
Likelihood Ratio	10.112	2	.006
Linear-by-Linear	9.955	1	.002
Association			
N of Valid Cases	532		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 35.26.

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.137	.042	3.182	$.002^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.137	.043	3.189	$.002^{\mathrm{C}}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 =Other/No affiliation) * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)

Crosstab

			U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)		
			1	2	3
Religious Affiliation (1=Catholic; 2=Protestant;   3=Jewish; 4=Muslim;   5=Other/No affiliation)	1	Count   \% of Total	$\begin{array}{r} 58 \\ 10.8 \% \end{array}$	$\begin{array}{r} 68 \\ 12.7 \% \end{array}$	$\begin{array}{r} \hline 17 \\ 3.2 \% \end{array}$
	2	Count   \% of Total	$\begin{array}{r} 120 \\ 22.4 \% \end{array}$	$\begin{array}{r} 88 \\ 16.4 \% \end{array}$	$\begin{array}{r} 39 \\ 7.3 \% \end{array}$
	3	Count   \% of Total	$\begin{array}{r} 11 \\ 2.1 \% \end{array}$	$\begin{array}{r} 21 \\ 3.9 \% \end{array}$	$\begin{array}{r} 3 \\ 0.6 \% \end{array}$
	4	Count   \% of Total	$\begin{array}{r} 1 \\ 0.2 \% \\ \hline \end{array}$	3 $0.6 \%$	2 $0.4 \%$
	5	Count   \% of Total	$\begin{array}{r} 16 \\ 3.0 \% \end{array}$	$\begin{array}{r} 64 \\ 11.9 \% \end{array}$	25 $4.7 \%$
Total		Count   \% of Total	$\begin{array}{r} 206 \\ 38.4 \% \end{array}$	$\begin{array}{r} 244 \\ 45.5 \% \end{array}$	$\begin{array}{r} 86 \\ 16.0 \% \end{array}$

Crosstab

Religious Affiliation   (1=Catholic; 2=Protestant;   3=Jewish; 4=Muslim;   5=Other/No affiliation)	1	Count	143
	2	\% of Total	$26.7 \%$
		\% of Total	$46.1 \%$
		Count	357
		\% of Total	$6.5 \%$
		Count	6
		\% of Total	$1.1 \%$
Total		Count	105
		Count Total	$19.6 \%$

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$43.077^{\mathrm{a}}$	8	.000
Likelihood Ratio	46.566	8	.000
Linear-by-Linear	23.522	1	.000
Association			
N of Valid Cases	536		

a. 3 cells (20.0\%) have expected count less than 5 . The minimum expected count is .96 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 210	. 039	4.956	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 172	. 040	4.034	. $000{ }^{\text {c }}$
$N$ of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age Group ( $1=18-29$; $2=30-39 ; 3=40-49 ; 4=50+$ ) * U.S. Senate ( $1=$ Republ ican Connie Mack; 2=Bill Nelson)

Crosstab

			U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)		
			1	2	3
Age Group (1=18-29;$2=30-39 ; 3=40-49 ; 4=50+)$	1	Count	11	19	6
		\% of Total	2.0\%	3.5\%	1.1\%
	2	Count	24	41	17
		\% of Total	4.4\%	7.6\%	3.1\%
	3	Count	49	66	21
		\% of Total	9.0\%	12.2\%	3.9\%
	4	Count	123	123	43
		\% of Total	22.7\%	22.7\%	7.9\%
Total		Count	207	249	87
		\% of Total	38.1\%	45.9\%	16.0\%

Crosstab

			Total
$\begin{aligned} & \text { Age Group (1=18-29; } \\ & 2=30-39 ; 3=40-49 ; 4=50+) \end{aligned}$	1	Count	36
		\% of Total	6.6\%
	2	Count	82
		\% of Total	15.1\%
	3	Count	136
		\% of Total	25.0\%
	4	Count	289
		\% of Total	53.2\%
Total		Count	543
		\% of Total	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$6.865^{\mathrm{a}}$	6	.334
Likelihood Ratio	6.896	6	.331
Linear-by-Linear	4.630	1	.031
Association			
N of Valid Cases	543		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 5.77.

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	-.092	.042	-2.159	$.031^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.099	.042	-2.306	$.021^{\mathrm{C}}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * U.S. Senate (1=Republic an Connie Mack; 2=Bill Nelson)

Crosstab

			U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)		
			1	2	3
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	19	22	7
		\% of Total	3.5\%	4.0\%	1.3\%
	2	Count	180	218	67
		\% of Total	33.0\%	40.0\%	12.3\%
	3	Count	9	10	13
		\% of Total	1.7\%	1.8\%	2.4\%
Total		Count	208	250	87
		\% of Total	38.2\%	45.9\%	16.0\%

Crosstab

		Total	
Hispanic or Latino (1=Yes;   2=No; 3=Unsure)	1		48
		\% of Total	$8.8 \%$
	2	Count	465
		\% of Total	$85.3 \%$
	3	Count	32
		\% of Total	$5.9 \%$
Total		Count	545
		\% of Total	$100.0 \%$

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$15.455^{\mathrm{a}}$	4	.004
Likelihood Ratio	12.066	4	.017
Linear-by-Linear	3.953	1	.047
Association			
N of Valid Cases	545		

a. 0 cells $(0.0 \%)$ have expected count less than 5 . The minimum expected count is 5.11 .

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.085	.047	1.994	$.047^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.076	.046	1.785	$.075^{\mathrm{C}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * U. S. Senate (1=Republican Connie Mack; 2=Bill Nelson)

Crosstab

			U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)		
			1	2	3
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	179	188	54
		\% of Total	32.4\%	34.0\%	9.8\%
	2	Count	7	35	12
		\% of Total	1.3\%	6.3\%	2.2\%
	3	Count	4	3	6
		\% of Total	0.7\%	0.5\%	1.1\%
	4	Count	9	18	7
		\% of Total	1.6\%	3.3\%	1.3\%
	5	Count	11	10	10
		\% of Total	2.0\%	1.8\%	1.8\%
Total		Count	210	254	89
		\% of Total	38.0\%	45.9\%	16.1\%

Crosstab

Race (1=White; 2=African   American; 3=Asian;   4=Other; 5=Refuse)	1	Count	421
		\% of Total	$76.1 \%$
	2	Count	54
		\% of Total	$9.8 \%$
	3	Count	13
		\% of Total	$2.4 \%$
	4	Count	34
		\% of Total	$6.1 \%$
		Count	31
		\% of Total	$5.6 \%$
Total		Count	553
			\% of Total
		$100.0 \%$	

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$36.854^{\mathrm{a}}$	8	.000
Likelihood Ratio	36.400	8	.000
Linear-by-Linear	11.928		1

Association
a. 3 cells $(20.0 \%)$ have expected count less than 5 . The minimum expected count is 2.09 .

Symmetric Measures

		Value	Asymp. Std.   Error $^{\text {a }}$	Approx. T ${ }^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	.147	.046	3.488	$.001^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	.187	.043	4.457	$.000^{\text {c }}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)

Crosstab

			U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)		
			1	2	3
```Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?```	1	Count	146	26	28
		\% of Total	25.5\%	4.5\%	4.9\%
	2	Count	25	168	23
		\% of Total	4.4\%	29.4\%	4.0\%
	3	Count	45	71	40
		\% of Total	7.9\%	12.4\%	7.0\%
Total		Count	216	265	91
		\% of Total	37.8\%	46.3\%	15.9\%

Crosstab

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count	200
	2	\% of Total	35.0%
		Count	216
	3	Count of Total	37.8%
Total		\% of Total	156
		Count	27.3%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	215.868^{a}	4	.000
Likelihood Ratio	227.136	4	.000
Linear-by-Linear	61.884	1	.000
Association			
N of Valid Cases	572		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 24.82 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 329	. 044	8.324	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 356	. 044	9.100	. $000{ }^{\text {c }}$
N of Valid Cases		572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

```
CROSSTABS
    /TABLES=Areyouregisteredtovote1yes2no Howlikelyareyoutovoteinthisyearspresi
dentialelections1likely2som Party1Democrat2Republican3Independentorminorparty
    Presidentialvote10bama2Romney30therUnsure President10bama2Romney3GaryJohnson
4NotSure
President1ObamaBiden2RomneyRyan3Notsure Gender1Male2Female ReligiousAffiliati
on1Catholic2Protestant3Jewish4Muslim50therNoaf AgeGroup118292303934049450 His
panicorLatino1Yes2No3Unsure Race1White2AfricanAmerican3Asian4Other5Refuse
RickScottsjobperformance1Approve2Disapprove3Unsure U.S.Senate1RepublicanConni
eMack2BillNelson BY President10bamaClinton2RomneyRyan3Notsure
    /FORMAT=AVALUE TABLES
    /STATISTICS=CHISQ CORR
    /CELLS=COUNT TOTAL
    /COUNT ROUND CELL.
```


Crosstabs

[DataSet1]

Warnings

> No measures of association are computed for the crosstabulation of Are you registered to vote (1=yes; 2=no) * President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure). At least one variable in each 2-way table upon which measures of association are computed is a constant.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Are you registered to vote (1=yes; 2=no) * President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)	595	67.9\%	281	32.1\%	876	100.0\%
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely) * President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)	595	67.9\%	281	32.1\%	876	100.0\%
Party (1=Democrat; 2=Republican; 3=Independent or minor party) * President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)	595	67.9\%	281	32.1\%	876	100.0\%
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure)	595	67.9\%	281	32.1\%	876	100.0\%
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure)	595	67.9\%	281	32.1\%	876	100.0\%
President (1=ObamaBiden; 2=Romney-Ryan; 3= Not sure) * President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)	595	67.9\%	281	32.1\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
$\begin{aligned} & \text { Gender (1=Male; } \\ & \text { 2=Female) * President } \\ & \text { (1=Obama-Clinton; } \\ & \text { 2=Romney-Ryan; 3=Not } \\ & \text { sure) } \end{aligned}$	532	60.7\%	344	39.3\%	876	100.0\%
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure)	536	61.2\%	340	38.8\%	876	100.0\%
Age Group (1=18-29; $2=30-39 ; 3=40-49 ; 4=50+)$ * President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure)	543	62.0\%	333	38.0\%	876	100.0\%
Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure)	545	62.2\%	331	37.8\%	876	100.0\%
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure)	553	63.1\%	323	36.9\%	876	100.0\%
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)	572	65.3\%	304	34.7\%	876	100.0\%
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure)	582	66.4\%	294	33.6\%	876	100.0\%

Are you registered to vote (1=yes; 2=no) * President (1=Obama-Clinto n; 2=Romney-Ryan; 3=Not sure)

Crosstab

Crosstab

Are you registered to vote (1=yes; 2=no)	1	Count $\%$
Total		595
	Count Total	100.0%
$\%$ of Total	595	
100.0%		

Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot a$
N of Valid Cases	595

a. No statistics are computed because Are you registered to vote (1=yes; $2=n o$) is a constant.

Symmetric Measures

	Value
Interval by Interval \quad Pearson's R	\cdot
N of Valid Cases	595

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * President (1=Obama-Clinton; 2=R omney-Ryan; 3=Not sure)

Crosstab

			President (1=Obama-Clinton; 2=Romney-Ryan;		
			3=Not sure)		

Crosstab

How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not	1	Count	578
likely)	2	Count	97.1%
Total		\% of Total	17
		Count	5.9%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	9.977^{a}	2	.007
Likelihood Ratio	7.423	2	.024
Linear-by-Linear	.480	1	.488
Association			
N of Valid Cases	595		

a. 1 cells (16.7%) have expected count less than 5 . The minimum expected count is 1.11 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T ${ }^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.028	.055	.693	$.489^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.009	.050	.220	$.826^{\mathrm{C}}$
N of Valid Cases		595			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Pr esident (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)

Crosstab

			President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)		
			1	2	3
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	215	25	16
		\% of Total	36.1\%	4.2\%	2.7\%
	2	Count	17	206	9
		\% of Total	2.9\%	34.6\%	1.5\%
	3	Count	42	51	14
		\% of Total	7.1\%	8.6\%	2.4\%
Total		Count	274	282	39
		\% of Total	46.1\%	47.4\%	6.6\%

Crosstab

Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	256
	2	\% of Total	43.0%
		Count	232
	3	Count Total	39.0%
Total		\% of Total	18.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	326.515^{a}	4	.000
Likelihood Ratio	371.107	4	.000
Linear-by-Linear	104.185	1	.000
Association			
N of Valid Cases	595		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 7.01 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 419	. 043	11.231	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 494	. 042	13.829	. $000{ }^{\text {c }}$
N of Valid Cases		595			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)

Crosstab

			President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)		
			1	2	3
Presidential vote (1=Obama; 2=Romney;	1	Count \% of Total	$\begin{array}{r} 260 \\ 43.7 \% \end{array}$	1 0.2%	9 1.5%
	2	Count \% of Total	7 1.2%	$\begin{array}{r} 275 \\ 46.2 \% \end{array}$	$\begin{array}{r} 11 \\ 1.8 \% \end{array}$
	3	Count \% of Total	7 1.2%	6 1.0%	19 3.2%
Total		Count \% of Total	$\begin{array}{r} 274 \\ 46.1 \% \end{array}$	$\begin{array}{r} 282 \\ 47.4 \% \end{array}$	$\begin{array}{r} 39 \\ 6.6 \% \end{array}$

Crosstab

Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	270
		\% of Total	45.4%
	2	Count	293
		\% of Total	49.2%
Total		Count	32
		\% of Total	5.4%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	682.331^{a}	4	.000
Likelihood Ratio	746.022	4	.000
Linear-by-Linear	372.582	1	.000
Association			
N of Valid Cases	595		

a. 1 cells (11.1\%) have expected count less than 5 . The minimum expected count is 2.10 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	${\text { Approx. } \mathrm{T}^{\mathrm{b}}}^{\text {Value }}$	Approx. Sig.	
Interval by Interval	Pearson's R	.792	.035	31.589	$.000^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.850	.028	39.215	$.000^{\mathrm{C}}$
N of Valid Cases		595			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Pres ident (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)

Crosstab

			President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)		
			1	2	3
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	256	1	7
		\% of Total	43.0\%	0.2\%	1.2\%
	2	Count	7	263	12
		\% of Total	1.2\%	44.2\%	2.0\%
	3	Count	3	11	4
		\% of Total	0.5\%	1.8\%	0.7\%
	4	Count	8	7	16
		\% of Total	1.3\%	1.2\%	2.7\%
Total		Count	274	282	39
		\% of Total	46.1\%	47.4\%	6.6\%

Crosstab

		Total	
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	264
		\% of Total	44.4%
	2	Count	282
		\% of Total	47.4%
	3	Count	18
		\% of Total	3.0%
Total		Count	31
		\% of Total	5.2%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	635.235^{a}	6	.000
Likelihood Ratio	719.383	6	.000
Linear-by-Linear	288.827	1	.000
Association			
N of Valid Cases	595		

a. 2 cells (16.7\%) have expected count less than 5 . The minimum expected count is 1.18.

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	. 697	. 041	23.690	. $000{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	. 828	. 029	35.946	. $000{ }^{\text {c }}$
N of Valid Cases	595			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)

Crosstab

			President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)		
			1	2	3
President (1=Obama- Biden; 2=Romney-Ryan; $3=\text { Not sure) }$	1	Count	257	2	7
		\% of Total	43.2\%	0.3\%	1.2\%
	2	Count	9	277	9
		\% of Total	1.5\%	46.6\%	1.5\%
	3	Count	8	3	23
		\% of Total	1.3\%	0.5\%	3.9\%
Total		Count	274	282	39
		\% of Total	46.1\%	47.4\%	6.6\%

Crosstab

President (1=Obama- Biden; 2=Romney-Ryan; 3= Not sure)	1	Count	266
		\% of Total	44.7%
	2	Count	295
		\% of Total	49.6%
	3	Count	34
		$\%$ of Total	5.7%
Total		Count	595
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	742.636^{a}	4	.000
Likelihood Ratio	754.214	4	.000
Linear-by-Linear	386.972	1	.000
Association			
N of Valid Cases	595		

a. 1 cells (11.1\%) have expected count less than 5 . The minimum expected count is 2.23.

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 807	. 035	33.293	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 853	. 028	39.761	$.000^{\text {c }}$
N of Valid Cases		595			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender (1=Male; 2=Female) * President (1=Obama-Clinton; 2=Romney -Ryan; 3=Not sure)

Crosstab

			President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)		
			1	2	3
Gender (1=Male; 2=Female)	1	Count	94	122	10
		\% of Total	17.7\%	22.9\%	1.9\%
	2	Count	150	132	24
		\% of Total	28.2\%	24.8\%	4.5\%
Total		Count	244	254	34
		\% of Total	45.9\%	47.7\%	6.4\%

	Crosstab		
Gender (1=Male; 2=Female)	1	Count	Total
		\% of Total	42.5%
Total	2	Count	306
		\% of Total	57.5%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.142^{a}	2	.028
Likelihood Ratio	7.225	2	.027
Linear-by-Linear	.568	1	.451
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 14.44 .

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	-. 033	. 043	-. 754	. $451{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	-. 049	. 043	-1.130	. $259{ }^{\text {c }}$
N of Valid Cases	532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 =Other/No affiliation) * President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)

Crosstab

			President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)		
			1	2	3
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	1	Count	68	68	7
		\% of Total	12.7\%	12.7\%	1.3\%
	2	Count	86	147	14
		\% of Total	16.0\%	27.4\%	2.6\%
	3	Count	18	15	2
		\% of Total	3.4\%	2.8\%	0.4\%
	4	Count	3	0	3
		\% of Total	0.6\%	0.0\%	0.6\%
	5	Count	70	25	10
		\% of Total	13.1\%	4.7\%	1.9\%
Total		Count	245	255	36
		\% of Total	45.7\%	47.6\%	6.7\%

Crosstab

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	1	Count	143
	2	\% of Total	26.7%
		\% of Total	46.1%
		Count	35
		\% of Total	6.5%
		Count	6
		\% of Total	1.1%
Total		Count	105
		Count Total	19.6%

Chi-Square Tests			
	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$58.896{ }^{\text {a }}$	8	. 000
Likelihood Ratio	53.412	8	. 000
Linear-by-Linear Association	6.240	1	. 012
N of Valid Cases	536		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .40 .

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	-. 108	. 047	-2.510	. $012^{\text {C }}$
Ordinal by Ordinal Spearman Correlation	-. 086	. 045	-2.003	. $046{ }^{\text {c }}$
N of Valid Cases	536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+) * President (1=Obama-Cl
inton; 2=Romney-Ryan; 3=Not sure) inton; 2=Romney-Ryan; 3=Not sure)

Crosstab

			President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)		
			1	2	3
$\begin{aligned} & \text { Age Group (1=18-29; } \\ & 2=30-39 ; 3=40-49 ; 4=50+) \end{aligned}$	1	Count	22	12	2
		\% of Total	4.1\%	2.2\%	0.4\%
	2	Count	40	33	9
		\% of Total	7.4\%	6.1\%	1.7\%
	3	Count	70	58	8
		\% of Total	12.9\%	10.7\%	1.5\%
	4	Count	118	154	17
		\% of Total	21.7\%	28.4\%	3.1\%
Total		Count	250	257	36
		\% of Total	46.0\%	47.3\%	6.6\%

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.398^{a}	6	.054
Likelihood Ratio	12.050	6	.061
Linear-by-Linear	3.006	1	.083
Association			
N of Valid Cases	543		

a. 1 cells (8.3%) have expected count less than 5 . The minimum expected count is 2.39 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 074	. 044	1.737	. $083{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 091	. 043	2.132	. $033{ }^{\text {c }}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * President (1=Obama-Clin ton; 2=Romney-Ryan; 3=Not sure)

Crosstab

			President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)		
			1	2	3
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	24	22	2
		\% of Total	4.4\%	4.0\%	0.4\%
	2	Count	212	224	29
		\% of Total	38.9\%	41.1\%	5.3\%
	3	Count	15	12	5
		\% of Total	2.8\%	2.2\%	0.9\%
Total		Count	251	258	36
		\% of Total	46.1\%	47.3\%	6.6\%

Crosstab

		Total	
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	48
		\% of Total	8.8%
	2	Count	465
		\% of Total	85.3%
	3	Count	32
		\% of Total	5.9%
Total		Count	545
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.403^{a}	4	.248
Likelihood Ratio	4.413	4	.353
Linear-by-Linear	1.095	1	.295
Association			
N of Valid Cases	545		

a. 2 cells (22.2%) have expected count less than 5 . The minimum expected count is 2.11 .

Symmetric Measures

			Asymp. Std. Error $^{\mathrm{a}}$	Approx. T ${ }^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.045	.045	1.046	$.296^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.035	.044	.809	$.419^{\mathrm{C}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Pr esident (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)

Crosstab					
			President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)		
			1	2	3
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	175	224	22
		\% of Total	31.6\%	40.5\%	4.0\%
	2	Count	39	12	3
		\% of Total	7.1\%	2.2\%	0.5\%
	3	Count	6	6	1
		\% of Total	1.1\%	1.1\%	0.2\%
	4	Count	21	9	4
		\% of Total	3.8\%	1.6\%	0.7\%
	5	Count	12	13	6
		\% of Total	2.2\%	2.4\%	1.1\%
Total		Count	253	264	36
		\% of Total	45.8\%	47.7\%	6.5\%

Crosstab

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	421
		\% of Total	76.1%
	2	Count	54
		\% of Total	9.8%
	3	Count	13
		\% of Total	2.4%
	4	Count	34
		\% of Total	6.1%
		Count	31
		\% of Total	5.6%
Total		Count	553
			\% of Total
		100.0%	

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	36.041^{a}	8	.000
Likelihood Ratio	34.107	8	.000
Linear-by-Linear	.003	1	.955
Association			
N of Valid Cases	553		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .85 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T ${ }^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	-.002	.050	-.056	$.955^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.091	.046	-2.133	$.033^{\mathrm{c}}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)

Crosstab

			President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure)		
			1	2	3
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count	15	178	7
		\% of Total	2.6\%	31.1\%	1.2\%
	2	Count	179	24	13
		\% of Total	31.3\%	4.2\%	2.3\%
	3	Count	70	68	18
		\% of Total	12.2\%	11.9\%	3.1\%
Total		Count	264	270	38
		\% of Total	46.2\%	47.2\%	6.6\%

Crosstab

			Total
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count \% of Total	$\begin{array}{r} 200 \\ 35.0 \% \end{array}$
	2	Count \% of Total	$\begin{array}{r} 216 \\ 37.8 \% \end{array}$
	3	Count \% of Total	$\begin{array}{r} 156 \\ 27.3 \% \end{array}$
Total		Count	572
		\% of Total	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	270.680^{a}	4	.000
Likelihood Ratio	304.922	4	.000
Linear-by-Linear	28.686	1	.000
Association			
N of Valid Cases	572		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 10.36 .

Symmetric Measures

| | | | Asymp. Std.
 Error $^{\mathrm{a}}$ | | Approx. T^{b} |
| :--- | :--- | ---: | ---: | ---: | ---: | Approx. Sig. | Aalue |
| :--- |

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * President (1 =Obama-Clinton; 2=Romney-Ryan; 3=Not sure)

Crosstab					
			President (1=Obama-Clinton; 2=Romney-Ryan; $3=$ Not sure)		
			1	2	3
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	23	189	8
		\% of Total	4.0\%	32.5\%	1.4\%
	2	Count	212	46	10
		\% of Total	36.4\%	7.9\%	1.7\%
	3	Count	33	41	20
		\% of Total	5.7\%	7.0\%	3.4\%
Total		Count	268	276	38
		\% of Total	46.0\%	47.4\%	6.5\%

Crosstab

			Total
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	220
		\% of Total	37.8%
	2	Count	268
		$\%$ of Total	46.0%
	3	Count	94
		$\%$ of Total	16.2%
Total		Count	582
		$\%$ of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	284.656^{a}	4	.000
Likelihood Ratio	294.255	4	.000
Linear-by-Linear	21.518	1	.000
Association			
N of Valid Cases	582		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 6.14 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 192	. 047	-4.723	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 301	. 047	-7.604	. $000{ }^{\text {c }}$
N of Valid Cases		582			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

CROSSTABS

/TABLES=Areyouregisteredtovote1yes2no Howlikelyareyoutovoteinthisyearspresi dentialelections1likely2som Party1Democrat2Republican3Independentorminorparty
Presidentialvote10bama2Romney30therUnsure President10bama2Romney3GaryJohnson 4NotSure
Gender1Male2Female ReligiousAffiliation1Catholic2Protestant3Jewish4Muslim50th erNoaf AgeGroup118292303934049450 HispanicorLatino1Yes2No3Unsure Race1White2A fricanAmerican3Asian40ther5Refuse RickScottsjobperformance1Approve2Disapprove 3Unsure
U.S.Senate1RepublicanConnieMack2BillNelson President10bamaClinton2RomneyRyan3 Notsure BY President10bamaBiden2RomneyRyan3Notsure
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ CORR
/CELLS=COUNT TOTAL
/COUNT ROUND CELL.

Crosstabs

[DataSet1]

Warnings

> No measures of association are computed for the crosstabulation of Are you registered to vote (1=yes; 2=no) * President (1=Obama-Biden; 2=Romney-Ryan; 3=Not sure). At least one variable in each 2-way table upon which measures of association are computed is a constant.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Are you registered to vote (1=yes; 2=no) * President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)	612	69.9\%	264	30.1\%	876	100.0\%
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely) * President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)	612	69.9\%	264	30.1\%	876	100.0\%
Party (1=Democrat; 2=Republican; 3=Independent or minor party) * President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)	612	69.9\%	264	30.1\%	876	100.0\%
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * President (1=Obama- Biden; 2=Romney-Ryan; $3=$ Not sure)	612	69.9\%	264	30.1\%	876	100.0\%
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * President (1=Obama- Biden; 2=Romney-Ryan; $3=$ Not sure)	612	69.9\%	264	30.1\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Gender (1=Male; 2=Female) * President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)	532	60.7\%	344	39.3\%	876	100.0\%
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * President (1=ObamaBiden; 2=Romney-Ryan; 3= Not sure)	536	61.2\%	340	38.8\%	876	100.0\%
Age Group (1=18-29; $2=30-39 ; 3=40-49 ; 4=50+)$ * President (1=Obama- Biden; 2=Romney-Ryan; $3=\text { Not sure) }$	543	62.0\%	333	38.0\%	876	100.0\%
Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * President (1=ObamaBiden; 2=Romney-Ryan; 3= Not sure)	545	62.2\%	331	37.8\%	876	100.0\%
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * President (1=Obama- Biden; 2=Romney-Ryan; $3=$ Not sure)	553	63.1\%	323	36.9\%	876	100.0\%
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)	572	65.3\%	304	34.7\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * President (1=Obama- Biden; 2=Romney-Ryan; $3=$ Not sure)	582	66.4\%	294	33.6\%	876	100.0\%
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure) * President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)	595	67.9\%	281	32.1\%	876	100.0\%

Are you registered to vote (1=yes; 2=no) * President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)

Crosstab

			President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)		
			1	2	3
Are you registered to vote (1=yes; 2=no)	1	Count	275	300	37
		\% of Total	44.9\%	49.0\%	6.0\%
Total		Count	275	300	37
		\% of Total	44.9\%	49.0\%	6.0\%

Crosstab

			Total
Are you registered to vote (1=yes; 2=no)	1	Count \% of Total	612 100.0%
Total		Count	612
		\% of Total	100.0%

Chi-Square Tests

	Value
Pearson Chi-Square	\cdot
N of Valid Cases	612

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval \quad Pearson's R	$\cdot{ }^{\circ}$
N of Valid Cases	612

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * President (1=Obama-Biden; 2=R omney-Ryan; 3= Not sure)

Crosstab

			President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)		
			1	2	3
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	1	Count	266	293	34
		\% of Total	43.5\%	47.9\%	5.6\%
	2	Count	9	7	3
		\% of Total	1.5\%	1.1\%	0.5\%
Total		Count	275	300	37
		\% of Total	44.9\%	49.0\%	6.0\%

Crosstab

How likely are you to vote in this year's presidential elections (1=likely;	1	Count	593
2=somewhat likely; 3=not likely)	2	\% of Total	96.9%
Total		Count	19
		Count Total	3.1%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3.698^{a}	2	.157
Likelihood Ratio	2.828	2	.243
Linear-by-Linear	.292	1	.589
Association			
N of Valid Cases	612		

a. 1 cells (16.7\%) have expected count less than 5 . The minimum expected count is 1.15 .

Symmetric Measures

			Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.022	.049	.540	$.590^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.011	.046	.265	$.791^{\mathrm{C}}$
N of Valid Cases		612			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Pr esident (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)

			President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)		
			1	2	3
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	220	33	12
		\% of Total	35.9\%	5.4\%	2.0\%
	2	Count	14	214	10
		\% of Total	2.3\%	35.0\%	1.6\%
	3	Count	41	53	15
		\% of Total	6.7\%	8.7\%	2.5\%
Total		Count	275	300	37
		\% of Total	44.9\%	49.0\%	6.0\%

Crosstab

Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	265
		\% of Total	43.3%
		Count	238
	3	\% of Total	38.9%
Total		\% of Total	17.8%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	334.188^{a}	4	.000
Likelihood Ratio	377.399	4	.000
Linear-by-Linear	122.638	1	.000
Association			
N of Valid Cases	612		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 6.59 .

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	. 448	. 041	12.377	. $000{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	. 516	. 040	14.897	$.000^{\text {c }}$
N of Valid Cases	612			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)

Crosstab

Crosstab

			Total
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	279
		\% of Total	45.6\%
	2	Count	297
		\% of Total	48.5\%
	3	Count	36
		\% of Total	5.9\%
Total		Count	612
		\% of Total	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	932.284^{a}	4	.000
Likelihood Ratio	911.015	4	.000
Linear-by-Linear	482.031	1	.000
Association			
N of Valid Cases	612		

a. 1 cells (11.1\%) have expected count less than 5 . The minimum expected count is 2.18 .

Symmetric Measures

			Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.888	.028	47.749	$.000^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	.919	.022	57.767	$.000^{\text {c }}$
N of Valid Cases		612			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Pres ident (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)

Crosstab

Crosstab

			Total
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	274
		\% of Total	44.8\%
	2	Count	286
		\% of Total	46.7\%
	3	Count	18
		\% of Total	2.9\%
	4	Count	34
		\% of Total	5.6\%
Total		Count	612
		\% of Total	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	833.281^{a}	6	.000
Likelihood Ratio	866.461	6	.000
Linear-by-Linear	387.124	1	.000
Association			
N of Valid Cases	612		

a. 2 cells (16.7\%) have expected count less than 5 . The minimum expected count is 1.09 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 796	. 035	32.478	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 891	. 024	48.401	$.000^{\text {c }}$
N of Valid Cases		612			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender (1=Male; 2=Female) * President (1=Obama-Biden; 2=Romney -Ryan; 3= Not sure)

Crosstab

			President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)		
			1	2	3
Gender (1=Male; 2=Female)	1	Count	91	126	9
		\% of Total	17.1\%	23.7\%	1.7\%
	2	Count	150	139	17
		\% of Total	28.2\%	26.1\%	3.2\%
Total		Count	241	265	26
		\% of Total	45.3\%	49.8\%	4.9\%

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.641^{a}	2	.060
Likelihood Ratio	5.656	2	.059
Linear-by-Linear	1.976	1	.160
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 11.05.

Symmetric Measures

			Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	-.061	.043	-1.407	$.160^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.072	.043	-1.667	$.096^{\mathrm{C}}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 =Other/No affiliation) * President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)

Crosstab

Crosstab

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	1	Count	143
	2	\% of Total	26.7%
		\% of Total	46.1%
		Count	357
		\% of Total	6.5%
		Count	6
		\% of Total	1.1%
Total		Count	105
		Count Total	19.6%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	44.106^{a}	8	.000
Likelihood Ratio	44.891	8	.000
Linear-by-Linear	19.141	1	.000
Association			
N of Valid Cases	536		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .31 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 189	. 044	-4.451	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 151	. 044	-3.518	. $000{ }^{\text {c }}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+) * President (1=Obama-B iden; 2=Romney-Ryan; 3= Not sure)

Crosstab

Crosstab

			Total
$\begin{aligned} & \text { Age Group (1=18-29; } \\ & 2=30-39 ; 3=40-49 ; 4=50+) \end{aligned}$	1	Count	36
		\% of Total	6.6\%
	2	Count	82
		\% of Total	15.1\%
	3	Count	136
		\% of Total	25.0\%
	4	Count	289
		\% of Total	53.2\%
Total		Count	543
		\% of Total	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	21.231^{a}	6	.002
Likelihood Ratio	21.217	6	.002
Linear-by-Linear	4.343	1	.037
Association			
N of Valid Cases	543		

a. 2 cells (16.7\%) have expected count less than 5 . The minimum expected count is 1.92.

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 090	. 043	2.090	. $037{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 105	. 043	2.452	$.015^{\text {c }}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * President (1=Obama-Bid en; 2=Romney-Ryan; 3= Not sure)

Crosstab

			President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)		
			1	2	3
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	21	25	2
		\% of Total	3.9\%	4.6\%	0.4\%
	2	Count	213	231	21
		\% of Total	39.1\%	42.4\%	3.9\%
	3	Count	13	13	6
		\% of Total	2.4\%	2.4\%	1.1\%
Total		Count	247	269	29
		\% of Total	45.3\%	49.4\%	5.3\%

Crosstab

			Total
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	48
		\% of Total	8.8\%
	2	Count	465
		\% of Total	85.3\%
	3	Count	32
		\% of Total	5.9\%
Total		Count	545
		\% of Total	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.314^{a}	4	.015
Likelihood Ratio	8.066	4	.089
Linear-by-Linear	1.136	1	.286
Association			
N of Valid Cases	545		

a. 2 cells (22.2%) have expected count less than 5 . The minimum expected count is 1.70.

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.	
Interval by Interval	Pearson's R	.046	.047	1.066	$.287^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.031	.045	.719	$.473^{\mathrm{C}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Pr esident (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)

Crosstab					
			President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)		
			1	2	3
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	172	232	17
		\% of Total	31.1\%	42.0\%	3.1\%
	2	Count	37	15	2
		\% of Total	6.7\%	2.7\%	0.4\%
	3	Count	5	6	2
		\% of Total	0.9\%	1.1\%	0.4\%
	4	Count	21	9	4
		\% of Total	3.8\%	1.6\%	0.7\%
	5	Count	14	13	4
		\% of Total	2.5\%	2.4\%	0.7\%
Total		Count	249	275	29
		\% of Total	45.0\%	49.7\%	5.2\%

Crosstab

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	421
		\% of Total	76.1%
	2	Count	54
		\% of Total	9.8%
	3	Count	13
		\% of Total	2.4%
	4	Count	34
		\% of Total	6.1%
		Count	31
		\% of Total	5.6%
Total		Count	553
			\% of Total
		100.0%	

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	32.463^{a}	8	.000
Likelihood Ratio	30.598	8	.000
Linear-by-Linear	.413	1	.520
Association			
N of Valid Cases	553		

a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .68 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\text {a }}$	Approx. T ${ }^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-.027	.049	-.643	$.521^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	-.100	.046	-2.352	$.019^{\text {c }}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)

Crosstab

Crosstab

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count	200
	2	\% of Total	35.0%
		Count	216
	3	Count Total	37.8%
Total		\% of Total	27.3%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	285.323^{a}	4	.000
Likelihood Ratio	327.245	4	.000
Linear-by-Linear	34.493	1	.000
Association			
N of Valid Cases	572		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 8.73.

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	-. 246	. 041	-6.054	. $000{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	-. 308	. 044	-7.721	$.000^{\text {c }}$
N of Valid Cases	572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * President (1 =Obama-Biden; 2=Romney-Ryan; 3= Not sure)

Crosstab

			President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)		
			1	2	3
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	21	193	6
		\% of Total	3.6\%	33.2\%	1.0\%
	2	Count	212	50	6
		\% of Total	36.4\%	8.6\%	1.0\%
	3	Count	29	44	21
		\% of Total	5.0\%	7.6\%	3.6\%
Total		Count	262	287	33
		\% of Total	45.0\%	49.3\%	5.7\%

Crosstab

			Total
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) 1 Count	220		
		\% of Total	37.8%
	2	Count	268
		\% of Total	46.0%
	3	Count	94
		\% of Total	16.2%
Total		Count	582
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	306.880^{a}	4	.000
Likelihood Ratio	310.189	4	.000
Linear-by-Linear	17.928	1	.000
Association			
N of Valid Cases	582		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 5.33.

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 176	. 048	-4.297	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 288	. 048	-7.239	. $000{ }^{\text {c }}$
N of Valid Cases		582			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)

Crosstab

			President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure)		
			1	2	3
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure)	1	Count	257	9	8
		\% of Total	43.2\%	1.5\%	1.3\%
	2	Count	2	277	3
		\% of Total	0.3\%	46.6\%	0.5\%
	3	Count	7	9	23
		\% of Total	1.2\%	1.5\%	3.9\%
Total		Count	266	295	34
		\% of Total	44.7\%	49.6\%	5.7\%

		Crosstab	
President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure)	1	Count	274
		\% of Total	46.1%
	2	Count	282
		\% of Total	47.4%
Total		Count	39
		Count Total	6.6%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	742.636^{a}	4	.000
Likelihood Ratio	754.214	4	.000
Linear-by-Linear	386.972	1	.000
Association	595		
N of Valid Cases			

a. 1 cells (11.1%) have expected count less than 5 . The minimum expected count is 2.23 .

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	. 807	. 035	33.293	. $000{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	. 853	. 028	39.761	$.000^{\text {c }}$
N of Valid Cases	595			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

CROSSTABS

/TABLES=Areyouregisteredtovote1yes2no Howlikelyareyoutovoteinthisyearspresi dentialelections1likely2som Party1Democrat2Republican3Independentorminorparty Presidentialvote10bama2Romney30therUnsure Gender1Male2Female ReligiousAffiliation1Catholic2Protestant3Jewish4Muslim50therNoaf AgeGroup1182 92303934049450 HispanicorLatino1Yes2No3Unsure Race1White2AfricanAmerican3Asia n40ther5Refuse RickScottsjobperformance1Approve2Disapprove3Unsure
U.S.Senate1RepublicanConnieMack2BillNelson President10bamaClinton2RomneyRyan3 Notsure President10bamaBiden2RomneyRyan3Notsure BY President10bama2Romney3Gar yJohnson4NotSure
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ CORR
/CELLS=COUNT TOTAL
/COUNT ROUND CELL.

Crosstabs

[DataSet1]

Warnings

$$
\begin{aligned}
& \text { No measures of association are computed for the } \\
& \text { crosstabulation of Are you registered to vote (1=yes; 2=no) * } \\
& \text { President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not } \\
& \text { Sure). At least one variable in each 2-way table upon which } \\
& \text { measures of association are computed is a constant. } \\
& \hline
\end{aligned}
$$

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Are you registered to vote (1=yes; 2=no) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	655	74.8\%	221	25.2\%	876	100.0\%
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	655	74.8\%	221	25.2\%	876	100.0\%
Party (1=Democrat; 2=Republican; 3=Independent or minor party) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	655	74.8\%	221	25.2\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	655	74.8\%	221	25.2\%	876	100.0\%
Gender (1=Male; 2=Female) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	532	60.7\%	344	39.3\%	876	100.0\%
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	536	61.2\%	340	38.8\%	876	100.0\%
$\begin{aligned} & \text { Age Group (1=18-29; } \\ & \text { 2=30-39; 3=40-49; 4=50+) } \\ & \text { * President (1=Obama; } \\ & \text { 2=Romney; 3=Gary } \\ & \text { Johnson; 4=Not Sure) } \end{aligned}$	543	62.0\%	333	38.0\%	876	100.0\%
Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	545	62.2\%	331	37.8\%	876	100.0\%
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	553	63.1\%	323	36.9\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	572	65.3\%	304	34.7\%	876	100.0\%
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	582	66.4\%	294	33.6\%	876	100.0\%
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	595	67.9\%	281	32.1\%	876	100.0\%
President (1=ObamaBiden; 2=Romney-Ryan; 3= Not sure) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	612	69.9\%	264	30.1\%	876	100.0\%

Are you registered to vote (1=yes; 2=no) * President (1=Obama; 2=Ro mney; 3=Gary Johnson; 4=Not Sure)

Crosstab

			President (1=Obama; 2=Romney; 3=Gary ...		
		1		2	

Crosstab

			$\begin{gathered} \text { President ... } \\ \hline 4 \end{gathered}$	Total
Are you registered to vote (1=yes; 2=no)	1	Count	39	655
		\% of Total	6.0\%	100.0\%
Total		Count	39	655
		\% of Total	6.0\%	100.0\%

Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot \cdot$
N of Valid Cases	655

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval \quad Pearson's R	\cdot^{a}
N of Valid Cases	655

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)

Crosstab

			President (1=Obama; 2=Romney; 3=Gary \ldots		
		1		2	

Crosstab

			President ...	Total
			4	
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	1	Count	35	633
		\% of Total	5.3\%	96.6\%
	2	Count	4	22
		\% of Total	0.6\%	3.4\%
Total		Count	39	655
		\% of Total	6.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.898^{a}	3	.048
Likelihood Ratio	6.203	3	.102
Linear-by-Linear	1.557	1	.212
Association			
N of Valid Cases	655		

a. 2 cells (25.0%) have expected count less than 5 . The minimum expected count is .64 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 049	. 055	1.248	. $212^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 011	. 046	. 275	$.783{ }^{\text {c }}$
N of Valid Cases		655			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Pr esident (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)

Crosstab

			President (1=Obama; 2=Romney; 3=Gary ...		
			1	2	3
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	232	34	4
		\% of Total	35.4\%	5.2\%	0.6\%
	2	Count	17	221	4
		\% of Total	2.6\%	33.7\%	0.6\%
	3	Count	43	50	11
		\% of Total	6.6\%	7.6\%	1.7\%
Total		Count	292	305	19
		\% of Total	44.6\%	46.6\%	2.9\%

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	366.633^{a}	6	.000
Likelihood Ratio	400.060	6	.000
Linear-by-Linear	107.811	1	.000
Association			
N of Valid Cases	655		

a. 1 cells (8.3%) have expected count less than 5 . The minimum expected count is 3.45 .

Symmetric Measures

			Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.406	.041	11.353	$.000^{\mathrm{c}}$
Ordinal by Ordinal	Spearman Correlation	.517	.038	15.437	$.000^{\mathrm{c}}$
N of Valid Cases		655			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)

Crosstab

			President ...	Total
			4	
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	7	297
		\% of Total	1.1\%	45.3\%
	2	Count	6	317
		\% of Total	0.9\%	48.4\%
	3	Count	26	41
		\% of Total	4.0\%	6.3\%
Total		Count	39	655
		\% of Total	6.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	911.060^{a}	6	.000
Likelihood Ratio	940.021	6	.000
Linear-by-Linear	409.333	1	.000
Association			
N of Valid Cases	655		

a. 2 cells (16.7%) have expected count less than 5 . The minimum expected count is 1.19.

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 791	. 035	33.053	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 888	. 024	49.273	. $000{ }^{\text {c }}$
N of Valid Cases		655			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender (1=Male; 2=Female) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)

Crosstab

			President (1=Obama; 2=Romney; 3=Gary ...		
			1	2	3
Gender (1=Male; 2=Female)	1	Count	89	118	8
		\% of Total	16.7\%	22.2\%	1.5\%
	2	Count	146	135	7
		\% of Total	27.4\%	25.4\%	1.3\%
Total		Count	235	253	15
		\% of Total	44.2\%	47.6\%	2.8\%

Crosstab

			President ...	Total
			4	
Gender (1=Male; 2=Female)	1	Count	11	226
		\% of Total	2.1\%	42.5\%
	2	Count	18	306
		\% of Total	3.4\%	57.5\%
Total		Count	29	532
		\% of Total	5.5\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	4.803^{a}	3	.187
Likelihood Ratio	4.805	3	.187
Linear-by-Linear	1.244	1	.265
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 6.37 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.	
Interval by Interval	Pearson's R	-.048	.043	-1.116	$.265^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.073	.043	-1.690	$.092^{\mathrm{C}}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 =Other/No affiliation) * President (1=Obama; 2=Romney; 3=Gary John son; 4=Not Sure)

Crosstab

			President (1=Obama; 2=Romney; 3=Gary ...		
			1	2	3
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	1	Count	63	70	4
		\% of Total	11.8\%	13.1\%	0.7\%
	2	Count	80	144	7
		\% of Total	14.9\%	26.9\%	1.3\%
	3	Count	18	15	0
		\% of Total	3.4\%	2.8\%	0.0\%
	4	Count	4	1	0
		\% of Total	0.7\%	0.2\%	0.0\%
	5	Count	71	24	5
		\% of Total	13.2\%	4.5\%	0.9\%
Total		Count	236	254	16
		\% of Total	44.0\%	47.4\%	3.0\%

Crosstab

			President ...	Total
			4	
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	1	Count	6	143
		\% of Total	1.1\%	26.7\%
	2	Count	16	247
		\% of Total	3.0\%	46.1\%
	3	Count	2	35
		\% of Total	0.4\%	6.5\%
	4	Count	1	6
		\% of Total	0.2\%	1.1\%
	5	Count	5	105
		\% of Total	0.9\%	19.6\%
Total		Count	30	536
		\% of Total	5.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	47.625^{a}	12	.000
Likelihood Ratio	50.190	12	.000
Linear-by-Linear	8.458	1	.004
Association			
N of Valid Cases	536		

a. 8 cells (40.0%) have expected count less than 5 . The minimum expected count is .18 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	-.126	.044	-2.929	$.004^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.127	.045	-2.959	$.003^{\mathrm{C}}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)

Crosstab

			President (1=Obama; 2=Romney; 3=Gary ...		
			1	2	3
$\begin{aligned} & \text { Age Group (1=18-29; } \\ & 2=30-39 ; 3=40-49 ; 4=50+) \end{aligned}$	1	Count	19	11	5
		\% of Total	3.5\%	2.0\%	0.9\%
	2	Count	40	32	2
		\% of Total	7.4\%	5.9\%	0.4\%
	3	Count	69	58	3
		\% of Total	12.7\%	10.7\%	0.6\%
	4	Count	113	155	6
		\% of Total	20.8\%	28.5\%	1.1\%
Total		Count	241	256	16
		\% of Total	44.4\%	47.1\%	2.9\%

Crosstab

			President ...	Total
			4	
$\begin{aligned} & \text { Age Group }(1=18-29 ; \\ & 2=30-39 ; 3=40-49 ; 4=50+) \end{aligned}$	1	Count	1	36
		\% of Total	0.2\%	6.6\%
	2	Count	8	82
		\% of Total	1.5\%	15.1\%
	3	Count	6	136
		\% of Total	1.1\%	25.0\%
	4	Count	15	289
		\% of Total	2.8\%	53.2\%
Total		Count	30	543
		\% of Total	5.5\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	29.604^{a}	9	.001
Likelihood Ratio	22.614	9	.007
Linear-by-Linear	.346	1	.556
Association			
N of Valid Cases	543		

a. 5 cells (31.2%) have expected count less than 5 . The minimum expected count is 1.06 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 025	. 045	. 588	. $557{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 074	. 044	1.724	. $085{ }^{\text {c }}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * President (1=Obama; 2= Romney; 3=Gary Johnson; 4=Not Sure)

Crosstab

			President (1=Obama; 2=Romney; 3=Gary ...		
			1	2	3
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	20	24	2
		\% of Total	3.7\%	4.4\%	0.4\%
	2	Count	209	220	12
		\% of Total	38.3\%	40.4\%	2.2\%
	3	Count	13	13	2
		\% of Total	2.4\%	2.4\%	0.4\%
Total		Count	242	257	16
		\% of Total	44.4\%	47.2\%	2.9\%

Crosstab

			President \ldots	Total
		4	48	
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	2	48
		\% of Total	0.4%	8.8%
	2	Count	24	465
		\% of Total	4.4%	85.3%
	3	Count	4	32
		\% of Total	0.7%	5.9%
Total	Count	30	545	
		\% of Total	5.5%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.334^{a}	6	.502
Likelihood Ratio	4.291	6	.637
Linear-by-Linear	.784	1	.376
Association			
N of Valid Cases	545		

a. 4 cells (33.3%) have expected count less than 5 . The minimum expected count is .94 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.038	.047	.885	$.376^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.016	.045	.379	$.705^{\mathrm{c}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Pr esident (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)

Crosstab

			President (1=Obama; 2=Romney; 3=Gary ...		
			1	2	3
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	166	222	12
		\% of Total	30.0\%	40.1\%	2.2\%
	2	Count	37	14	1
		\% of Total	6.7\%	2.5\%	0.2\%
	3	Count	6	6	0
		\% of Total	1.1\%	1.1\%	0.0\%
	4	Count	21	8	2
		\% of Total	3.8\%	1.4\%	0.4\%
	5	Count	14	13	1
		\% of Total	2.5\%	2.4\%	0.2\%
Total		Count	244	263	16
		\% of Total	44.1\%	47.6\%	2.9\%

Crosstab

			President ...	Total
			4	
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	21	421
		\% of Total	3.8\%	76.1\%
	2	Count	2	54
		\% of Total	0.4\%	9.8\%
	3	Count	1	13
		\% of Total	0.2\%	2.4\%
	4	Count	3	34
		\% of Total	0.5\%	6.1\%
	5	Count	3	31
		\% of Total	0.5\%	5.6\%
Total		Count	30	553
		\% of Total	5.4\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	27.791^{a}	12	.006
Likelihood Ratio	28.357	12	.005
Linear-by-Linear	.448	1	.503
Association			
N of Valid Cases	553		

a. 8 cells (40.0%) have expected count less than 5 . The minimum expected count is .38 .

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	-. 028	. 049	-. 669	. $504{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	-. 124	. 045	-2.929	. $004{ }^{\text {c }}$
N of Valid Cases	553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)

Crosstab

			President (1=Obama; 2=Romney; 3=Gary ...		
			1	2	3
```Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?```	1	Count	10	176	$\begin{array}{r} 8 \\ 1.4 \% \end{array}$
		\% of Total	1.7\%	30.8\%	
	2	Count	179	23	3
		\% of Total	31.3\%	4.0\%	0.5\%
	3	Count	66	71	6
		\% of Total	11.5\%	12.4\%	1.0\%
Total		Count	255	270	17
		\% of Total	44.6\%	47.2\%	3.0\%

Crosstab

			President ...	Total
			4	
Rick Scott's job performance (1=Approve;   2=Disapprove;   3=Unsure)?	1	Count	6	200
		\% of Total	1.0\%	35.0\%
	2	Count	11	216
		\% of Total	1.9\%	37.8\%
	3	Count	13	156
		\% of Total	2.3\%	27.3\%
Total		Count	30	572
		\% of Total	5.2\%	100.0\%

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$280.964^{\mathrm{a}}$	6	.000
Likelihood Ratio	324.841	6	.000
Linear-by-Linear	16.012	1	.000
Association			
N of Valid Cases	572		

a. 1 cells ( $8.3 \%$ ) have expected count less than 5 . The minimum expected count is 4.64 .

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	-.167	.043	-4.055	$.000^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.294	.043	-7.343	$.000^{\mathrm{C}}$
N of Valid Cases		572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * President (1 =Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)

Crosstab					
			President (1=Obama; 2=Romney; 3=Gary ...		
			1	2	3
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	21	184	10
		\% of Total	3.6\%	31.6\%	1.7\%
	2	Count	208	47	4
		\% of Total	35.7\%	8.1\%	0.7\%
	3	Count	30	43	4
		\% of Total	5.2\%	7.4\%	0.7\%
Total		Count	259	274	18
		\% of Total	44.5\%	47.1\%	3.1\%

Crosstab

			President $\ldots$	Total
		4	Count   U.S. Senate   (1=Republican Connie   Mack; 2=Bill Nelson)	
	\% of Total	5	220	
	2	Count	$0.9 \%$	$37.8 \%$
		\% of Total	9	268
	3	Count	$1.5 \%$	$46.0 \%$
Total	\% of Total	17	94	
		Count	$2.9 \%$	$16.2 \%$

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$280.602^{\mathrm{a}}$	6	.000
Likelihood Ratio	292.112	6	.000
Linear-by-Linear	5.185	1	.023
Association			
N of Valid Cases	582		

a. 1 cells $(8.3 \%)$ have expected count less than 5 . The minimum expected count is 2.91 .

Symmetric Measures

		Value	Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	-.094	.050	-2.285	$.023^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.285	.046	-7.161	$.000^{\mathrm{C}}$
N of Valid Cases		582			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)

Crosstab

			President (1=Obama; 2=Romney; 3=Gary ...		
			1	2	3
President (1=ObamaClinton; 2=Romney-Ryan; $3=$ Not sure)	1	Count	256	7	3
		\% of Total	43.0\%	1.2\%	0.5\%
	2	Count	1	263	11
		\% of Total	0.2\%	44.2\%	1.8\%
	3	Count	7	12	4
		\% of Total	1.2\%	2.0\%	0.7\%
Total		Count	264	282	18
		\% of Total	44.4\%	47.4\%	3.0\%

Crosstab

			President ...	Total
			4	
President (1=ObamaClinton; 2=Romney-Ryan; $3=$ Not sure)	1	Count	8	274
		\% of Total	1.3\%	46.1\%
	2	Count	7	282
		\% of Total	1.2\%	47.4\%
	3	Count	16	39
		\% of Total	2.7\%	6.6\%
Total		Count	31	595
		\% of Total	5.2\%	100.0\%

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$635.235^{\mathrm{a}}$	6	.000
Likelihood Ratio	719.383	6	.000
Linear-by-Linear	288.827	1	.000
Association			
N of Valid Cases	595		

a. 2 cells (16.7\%) have expected count less than 5 . The minimum expected count is 1.18 .

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.697	.041	23.690	$.000^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	.828	.029	35.946	$.000^{\text {c }}$
N of Valid Cases		595			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)

Crosstab

			President (1=Obama; 2=Romney; 3=Gary ...		
			1	2	3
President (1=Obama-   Biden; 2=Romney-Ryan; $3=$ Not sure)	1	Count	267	0	3
		\% of Total	43.6\%	0.0\%	0.5\%
	2	Count	2	282	10
		\% of Total	0.3\%	46.1\%	1.6\%
	3	Count	5	4	5
		\% of Total	0.8\%	0.7\%	0.8\%
Total		Count	274	286	18
		\% of Total	44.8\%	46.7\%	2.9\%

Crosstab

			President ...	Total
			4	
President (1=Obama-   Biden; 2=Romney-Ryan; $3=$ Not sure)	1	Count	5	275
		\% of Total	0.8\%	44.9\%
	2	Count	6	300
		\% of Total	1.0\%	49.0\%
	3	Count	23	37
		\% of Total	3.8\%	6.0\%
Total		Count	34	612
		\% of Total	5.6\%	100.0\%

## Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$833.281^{\mathrm{a}}$	6	.000
Likelihood Ratio	866.461	6	.000
Linear-by-Linear	387.124	1	.000
Association			
N of Valid Cases	612		

a. 2 cells ( $16.7 \%$ ) have expected count less than 5 . The minimum expected count is 1.09 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 796	. 035	32.478	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 891	. 024	48.401	. $000{ }^{\text {c }}$
N of Valid Cases		612			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## CROSSTABS

/TABLES=Areyouregisteredtovote1yes2no Howlikelyareyoutovoteinthisyearspresi dentialelections1likely2som Party1Democrat2Republican3Independentorminorparty
Gender1Male2Female ReligiousAffiliation1Catholic2Protestant3Jewish4Muslim50t herNoaf
AgeGroup118292303934049450 HispanicorLatino1Yes2No3Unsure Race1White2AfricanA merican3Asian40ther5Refuse RickScottsjobperformance1Approve2Disapprove3Unsure U.S.Senate1RepublicanConnieMack2BillNelson President10bamaClinton2RomneyRyan 3Notsure
President10bamaBiden2RomneyRyan3Notsure President10bama2Romney3GaryJohnson4No tSure BY Presidentialvote10bama2Romney30therUnsure
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ CORR
/CELLS=COUNT TOTAL
/COUNT ROUND CELL.

## Crosstabs

[DataSet1]

## Warnings

$$
\begin{aligned}
& \text { No measures of association are computed for the } \\
& \text { crosstabulation of Are you registered to vote (1=yes; 2=no) * } \\
& \text { Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure). At } \\
& \text { least one variable in each 2-way table upon which measures of } \\
& \text { association are computed is a constant. }
\end{aligned}
$$

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Are you registered to vote (1=yes; 2=no) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	667	76.1\%	209	23.9\%	876	100.0\%
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	667	76.1\%	209	23.9\%	876	100.0\%
Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	667	76.1\%	209	23.9\%	876	100.0\%
```Gender (1=Male; 2=Female) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)```	532	60.7\%	344	39.3\%	876	100.0\%
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	536	61.2\%	340	38.8\%	876	100.0\%
Age Group (1=18-29; $2=30-39 ; 3=40-49 ; 4=50+\text {) }$ * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	543	62.0\%	333	38.0\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	545	62.2\%	331	37.8\%	876	100.0\%
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	553	63.1\%	323	36.9\%	876	100.0\%
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	572	65.3\%	304	34.7\%	876	100.0\%
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	582	66.4\%	294	33.6\%	876	100.0\%
President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	595	67.9\%	281	32.1\%	876	100.0\%
President (1=Obama- Biden; 2=Romney-Ryan; 3= Not sure) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	612	69.9\%	264	30.1\%	876	100.0\%
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	655	74.8\%	221	25.2\%	876	100.0\%

Are you registered to vote (1=yes; 2=no) * Presidential vote (1=Obama ; 2=Romney; 3=Other/Unsure)

Crosstab

		Presidential vote (1=Obama; 2=Romney;		
		3=Other/Unsure)		
		1		2

Crosstab

			Total
Are you registered to vote (1=yes; 2=no)	1	Count	667
		\% of Total	100.0\%
Total		Count	667
		\% of Total	100.0\%

Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot a$
N of Valid Cases	667

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval \quad Pearson's R	\cdot
N of Valid Cases	667

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * Presidential vote (1=Obama; 2=R omney; 3=Other/Unsure)

Crosstab

			Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)		
			1	2	3
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	1	Count	290	316	38
		\% of Total	43.5\%	47.4\%	5.7\%
	2	Count	11	6	6
		\% of Total	1.6\%	0.9\%	0.9\%
Total		Count	301	322	44
		\% of Total	45.1\%	48.3\%	6.6\%

Crosstab

		Total	
How likely are you to vote in this year's presidential elections (1=likely;	1	Count	644
2=somewhat likely; 3=not	2	\% of Total	96.6%
likely)		Count	23
Total		Count Total	3.4%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	16.185^{a}	2	.000
Likelihood Ratio	10.965	2	.004
Linear-by-Linear	1.819	1	.177
Association			
N of Valid Cases	667		

a. 1 cells (16.7%) have expected count less than 5 . The minimum expected count is 1.52 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 052	. 053	1.349	. $178{ }^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	. 030	. 048	. 774	$.439^{\text {c }}$
N of Valid Cases		667			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Pr esidential vote (1=Obama; 2=Romney; 3=Other/Unsure)

Crosstab

			Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)		
			1	2	3
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	240	35	12
		\% of Total	36.0\%	5.2\%	1.8\%
	2	Count	18	231	9
		\% of Total	2.7\%	34.6\%	1.3\%
	3	Count	43	56	23
		\% of Total	6.4\%	8.4\%	3.4\%
Total		Count	301	322	44
		\% of Total	45.1\%	48.3\%	6.6\%

Crosstab

Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	287
	2	\% of Total	43.0%
		Count	258
	3	Count Total	38.7%
Total		\% of Total	18.3%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	382.709^{a}	4	.000
Likelihood Ratio	416.925	4	.000
Linear-by-Linear	153.390	1	.000
Association			
N of Valid Cases	667		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 8.05.

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 480	. 039	14.106	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 537	. 037	16.413	. $000{ }^{\text {c }}$
N of Valid Cases		667			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender (1=Male; 2=Female) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)

Crosstab

			Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)		
			1	2	3
Gender (1=Male; 2=Female)	1	Count	89	126	11
		\% of Total	16.7\%	23.7\%	2.1\%
	2	Count	153	139	14
		\% of Total	28.8\%	26.1\%	2.6\%
Total		Count	242	265	25
		\% of Total	45.5\%	49.8\%	4.7\%

	Crosstab		
Gender (1=Male; 2=Female)	1	Count	Total
		\% of Total	42.5%
Total	2	Count	306
		\% of Total	57.5%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.030^{a}	2	.049
Likelihood Ratio	6.052	2	.049
Linear-by-Linear	4.604	1	.032
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 10.62 .

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	-. 093	. 043	-2.153	. $032{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	-. 100	. 043	-2.302	. $022{ }^{\text {c }}$
N of Valid Cases	532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 =Other/No affiliation) * Presidential vote (1=Obama; 2=Romney; 3=Oth er/Unsure)

Crosstab

Crosstab

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	1	Count	143
	2	\% of Total	26.7%
		\% of Total	46.1%
		Count	35
		\% of Total	6.5%
		Count	6
		\% of Total	1.1%
Total		Count	105
		Count Total	19.6%

Chi-Square Tests

	Value	df	Asymp. Sig. $(2-s i d e d)$
Pearson Chi-Square	44.607^{a}	8	.000
Likelihood Ratio	45.186	8	.000
Linear-by-Linear	22.272		1

Association
N of Valid Cases
a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .30 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\text {a }}$	Approx. T ${ }^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-.204	.043	-4.816	$.000^{\text {C }}$
Ordinal by Ordinal	Spearman Correlation	-.164	.044	-3.835	$.000^{\text {c }}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+) * Presidential vote (1=0 bama; 2=Romney; 3=Other/Unsure)

Crosstab

			Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)		
			1	2	3
Age Group (1=18-29;$2=30-39 ; 3=40-49 ; 4=50+\text {) }$	1	Count	22	14	0
		\% of Total	4.1\%	2.6\%	0.0\%
	2	Count	40	33	9
		\% of Total	7.4\%	6.1\%	1.7\%
	3	Count	70	60	6
		\% of Total	12.9\%	11.0\%	1.1\%
	4	Count	115	160	14
		\% of Total	21.2\%	29.5\%	2.6\%
Total		Count	247	267	29
		\% of Total	45.5\%	49.2\%	5.3\%

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	17.472^{a}	6	.008
Likelihood Ratio	18.202	6	.006
Linear-by-Linear	4.750	1	.029
Association			
N of Valid Cases	543		

a. 2 cells (16.7%) have expected count less than 5 . The minimum expected count is 1.92 .

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	. 094	. 042	2.187	. $029{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	. 106	. 043	2.486	$.013{ }^{\text {c }}$
N of Valid Cases	543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Presidential vote (1=Ob ama; 2=Romney; 3=Other/Unsure)

Crosstab

			Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)		
			1	2	3
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	21	24	3
		\% of Total	3.9\%	4.4\%	0.6\%
	2	Count	214	231	20
		\% of Total	39.3\%	42.4\%	3.7\%
	3	Count	12	13	7
		\% of Total	2.2\%	2.4\%	1.3\%
Total		Count	247	268	30
		\% of Total	45.3\%	49.2\%	5.5\%

Crosstab

			Total
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	48
		\% of Total	8.8\%
	2	Count	465
		\% of Total	85.3\%
	3	Count	32
		\% of Total	5.9\%
Total		Count	545
		\% of Total	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	17.866^{a}	4	.001
Likelihood Ratio	11.282	4	.024
Linear-by-Linear	1.577	1	.209
Association			
N of Valid Cases	545		

a. 2 cells (22.2%) have expected count less than 5 . The minimum expected count is 1.76 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 054	. 049	1.257	. $209{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 039	. 046	. 921	$.358{ }^{\text {c }}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Pr esidential vote (1=Obama; 2=Romney; 3=Other/Unsure)

Crosstab					
			Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)		
			1	2	3
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count \% of Total	$\begin{array}{r} 171 \\ 30.9 \% \end{array}$	$\begin{array}{r} 232 \\ 42.0 \% \end{array}$	18 3.3%
	2	Count	37	15	2
		\% of Total	6.7\%	2.7\%	0.4\%
	3	Count	5	6	2
		\% of Total	0.9\%	1.1\%	0.4\%
	4	Count	21	8	5
		\% of Total	3.8\%	1.4\%	0.9\%
	5	Count	15	13	3
		\% of Total	2.7\%	2.4\%	0.5\%
Total		Count	249	274	30
		\% of Total	45.0\%	49.5\%	5.4\%

Crosstab

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	421
		\% of Total	76.1%
	2	Count	54
		\% of Total	9.8%
	3	Count	13
		\% of Total	2.4%
	4	Count	34
		\% of Total	6.1%
		Count	31
		\% of Total	5.6%
Total		Count	553
			\% of Total
		100.0%	

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	33.712^{a}	8	.000
Likelihood Ratio	32.069	8	.000
Linear-by-Linear	.972		1

Association
N of Valid Cases
a. 4 cells (26.7%) have expected count less than 5 . The minimum expected count is .71 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T ${ }^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	-.042	.048	-.986	$.325^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.110	.045	-2.602	$.010^{\mathrm{C}}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)

Crosstab

			Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)		
			1	2	3
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count	10	181	9
		\% of Total	1.7\%	31.6\%	1.6\%
	2	Count	180	27	9
		\% of Total	31.5\%	4.7\%	1.6\%
	3	Count	70	73	13
		\% of Total	12.2\%	12.8\%	2.3\%
Total		Count	260	281	31
		\% of Total	45.5\%	49.1\%	5.4\%

Crosstab

			Total
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count	200
	2	\% of Total	35.0%
		Count	216
	3	\% of Total	37.8%
Total		\% of Total	27.3%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	272.430^{a}	4	.000
Likelihood Ratio	315.528	4	.000
Linear-by-Linear	44.027	1	.000
Association			
N of Valid Cases	572		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 8.45.

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 278	. 041	-6.901	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 332	. 043	-8.397	$.000^{\text {c }}$
N of Valid Cases		572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)

Crosstab

			Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)		
			1	2	3
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	22	191	7
		\% of Total	3.8\%	32.8\%	1.2\%
	2	Count	211	49	8
		\% of Total	36.3\%	8.4\%	1.4\%
	3	Count	31	46	17
		\% of Total	5.3\%	7.9\%	2.9\%
Total		Count	264	286	32
		\% of Total	45.4\%	49.1\%	5.5\%

Crosstab

		Total	
U.S. Senate Mack; 2=Bill Nelson) M=Republican Connie	1	Count	220
	2	\% of Total	37.8%
		Count	268
	3	Count Total	46.0%
Total		\% of Total	16.2%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	277.408^{a}	4	.000
Likelihood Ratio	289.574	4	.000
Linear-by-Linear	24.128	1	.000
Association	582		
N of Valid Cases			

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 5.17.

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 204	. 047	-5.013	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 306	. 046	-7.747	. $000{ }^{\text {c }}$
N of Valid Cases		582			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * President ial vote (1=Obama; 2=Romney; 3=Other/Unsure)

Crosstab

			Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)		
			1	2	3
President (1=ObamaClinton; 2=Romney-Ryan; $3=$ Not sure)	1	Count	260	7	7
		\% of Total	43.7\%	1.2\%	1.2\%
	2	Count	1	275	6
		\% of Total	0.2\%	46.2\%	1.0\%
	3	Count	9	11	19
		\% of Total	1.5\%	1.8\%	3.2\%
Total		Count	270	293	32
		\% of Total	45.4\%	49.2\%	5.4\%

Crosstab

		Total	
President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure)	1	Count	274
		\% of Total	46.1%
	2	Count	282
		\% of Total	47.4%
Total		Count	39
		Count Total	6.6%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	682.331^{a}	4	.000
Likelihood Ratio	746.022	4	.000
Linear-by-Linear	372.582	1	.000
Association			
N of Valid Cases	595		

a. 1 cells (11.1\%) have expected count less than 5 . The minimum expected count is 2.10.

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	${\text { Approx. } \mathrm{T}^{\mathrm{b}}}^{\text {Approx. Sig. }}$	
Anterval by Interval	Pearson's R	.792	.035	31.589	$.000^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.850	.028	39.215	$.000^{\mathrm{C}}$
N of Valid Cases		595			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * President ial vote (1=Obama; 2=Romney; 3=Other/Unsure)

Crosstab

			Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)		
			1	2	3
President (1=ObamaBiden; 2=Romney-Ryan; $3=$ Not sure)	1	Count	271	0	4
		\% of Total	44.3\%	0.0\%	0.7\%
	2	Count	2	294	4
		\% of Total	0.3\%	48.0\%	0.7\%
	3	Count	6	3	28
		\% of Total	1.0\%	0.5\%	4.6\%
Total		Count	279	297	36
		\% of Total	45.6\%	48.5\%	5.9\%

Crosstab

		Total	
President (1=Obama- Biden; 2=Romney-Ryan; 3= Not sure)	1	Count	275
		\% of Total	44.9%
	2	Count	300
		\% of Total	49.0%
	3	Count	37
		\% of Total	6.0%
Total		Count	612
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	932.284^{a}	4	.000
Likelihood Ratio	911.015	4	.000
Linear-by-Linear	482.031	1	.000
Association			
N of Valid Cases	612		

a. 1 cells (11.1%) have expected count less than 5 . The minimum expected count is 2.18.

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	. 888	. 028	47.749	. $000{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	. 919	. 022	57.767	$.000^{\text {c }}$
N of Valid Cases	612			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Pres idential vote (1=Obama; 2=Romney; 3=Other/Unsure)

Crosstab

			Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)		
			1	2	3
President (1=Obama; 2=Romney; 3=Gary	1	Count \% of Total	$\begin{array}{r} 286 \\ 43.7 \% \end{array}$	1 0.2%	$\begin{array}{r} 5 \\ 0.8 \% \end{array}$
	2	Count \% of Total	$\begin{array}{r} 1 \\ 0.2 \% \end{array}$	$\begin{array}{r} 301 \\ 46.0 \% \end{array}$	$\begin{array}{r} 3 \\ 0.5 \% \end{array}$
	3	Count \% of Total	3 0.5%	9 1.4%	7 1.1%
	4	Count \% of Total	7 1.1%	6 0.9%	26 4.0%
Total		Count \% of Total	$\begin{array}{r} 297 \\ 45.3 \% \end{array}$	$\begin{array}{r} 317 \\ 48.4 \% \end{array}$	$\begin{array}{r} 41 \\ 6.3 \% \end{array}$

Crosstab

		Total	
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	292
		\% of Total	44.6%
	2	Count	305
		\% of Total	46.6%
	3	Count	19
		\% of Total	2.9%
	4	Count	39
		\% of Total	6.0%
Total		Count	655
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	911.060^{a}	6	.000
Likelihood Ratio	940.021	6	.000
Linear-by-Linear	409.333	1	.000
Association			
N of Valid Cases	655		

a. 2 cells (16.7\%) have expected count less than 5 . The minimum expected count is 1.19.

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	${\text { Approx. } \mathrm{T}^{\mathrm{b}}}^{\text {Value }}$	Approx. Sig.	
Interval by Interval	Pearson's R	.791	.035	33.053	$.000^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.888	.024	49.273	$.000^{\mathrm{C}}$
N of Valid Cases		655			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

CROSSTABS

/TABLES=Areyouregisteredtovote1yes2no Howlikelyareyoutovoteinthisyearspresi dentialelections1likely2som Gender1Male2Female ReligiousAffiliation1Catholic2 Protestant3Jewish4Muslim50therNoaf AgeGroup118292303934049450 HispanicorLatin o1Yes2No3Unsure
Race1White2AfricanAmerican3Asian40ther5Refuse RickScottsjobperformance1Approv e2Disapprove3Unsure U.S.Senate1RepublicanConnieMack2BillNelson President10bam aClinton2RomneyRyan3Notsure President10bamaBiden2RomneyRyan3Notsure President10bama2Romney3GaryJohnson4NotSure Presidentialvote10bama2Romney30the rUnsure BY Party1Democrat2Republican3Independentorminorparty
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ CORR
/CELLS=COUNT TOTAL
/COUNT ROUND CELL.

Crosstabs

[DataSet1]

Warnings

$$
\begin{aligned}
& \text { No measures of association are computed for the } \\
& \text { crosstabulation of Are you registered to vote (1=yes; 2=no) * } \\
& \text { Party (1=Democrat; 2=Republican; 3=Independent or minor } \\
& \text { party). At least one variable in each 2-way table upon which } \\
& \text { measures of association are computed is a constant. }
\end{aligned}
$$

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Are you registered to vote (1=yes; 2=no) * Party (1=Democrat; 2=Republican; 3=Independent or minor party)	682	77.9\%	194	22.1\%	876	100.0\%
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely) * Party (1=Democrat; 2=Republican; 3=Independent or minor party)	682	77.9\%	194	22.1\%	876	100.0\%
Gender (1=Male; 2=Female) * Party (1=Democrat; 2=Republican; 3=Independent or minor party)	532	60.7\%	344	39.3\%	876	100.0\%
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * Party (1=Democrat; 2=Republican; 3=Independent or minor party)	536	61.2\%	340	38.8\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
$\begin{aligned} & \hline \text { Age Group (1=18-29; } \\ & \text { 2=30-39; 3=40-49; 4=50+) } \\ & \text { * Party (1=Democrat; } \\ & \text { 2=Republican; } \\ & \text { 3=Independent or minor } \\ & \text { party) } \end{aligned}$	543	62.0\%	333	38.0\%	876	100.0\%
Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Party (1=Democrat; 2=Republican; 3=Independent or minor party)	545	62.2\%	331	37.8\%	876	100.0\%
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Party (1=Democrat; 2=Republican; 3=Independent or minor party)	553	63.1\%	323	36.9\%	876	100.0\%
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Party (1=Democrat; 2=Republican; 3=Independent or minor party)	572	65.3\%	304	34.7\%	876	100.0\%
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Party (1=Democrat; 2=Republican; 3=Independent or minor party)	582	66.4\%	294	33.6\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure) * Party (1=Democrat; 2=Republican; 3=Independent or minor party)	595	67.9\%	281	32.1\%	876	100.0\%
President (1=Obama- Biden; 2=Romney-Ryan; 3= Not sure) * Party (1=Democrat; 2=Republican; 3=Independent or minor party)	612	69.9\%	264	30.1\%	876	100.0\%
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Party (1=Democrat; 2=Republican; 3=Independent or minor party)	655	74.8\%	221	25.2\%	876	100.0\%
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Party (1=Democrat; 2=Republican; 3=Independent or minor party)	667	76.1\%	209	23.9\%	876	100.0\%

Are you registered to vote (1=yes; 2=no) * Party (1=Democrat; 2=Rep ublican; 3=Independent or minor party)

Crosstab

Crosstab

			Total
Are you registered to vote (1=yes; 2=no)	1	Count \% of Total	682 100.0%
Total		Count	682
		\% of Total	100.0%

Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot a$
N of Valid Cases	682

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value	
Interval by Interval	Pearson's R	$\cdot{ }^{\circ}$
N of Valid Cases	682	

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * Party (1=Democrat; 2=Republican; $3=$ Independent or minor party)

Crosstab

			Party (1=Democrat; 2=Republican; 3=Independent or minor party)		
			1	2	3
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	1	Count	284	256	118
		\% of Total	41.6\%	37.5\%	17.3\%
	2	Count	8	9	7
		\% of Total	1.2\%	1.3\%	1.0\%
Total		Count	292	265	125
		\% of Total	42.8\%	38.9\%	18.3\%

Crosstab

How likely are you to vote in this year's presidential elections (1=likely;	1	Count	658
2=somewhat likely; 3=not likely)	2	\% of Total	96.5%
Total		Count	24
		Cof Total	3.5%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2.128^{a}	2	.345
Likelihood Ratio	1.934	2	.380
Linear-by-Linear	1.860	1	.173
Association			
N of Valid Cases	682		

a. 1 cells (16.7%) have expected count less than 5 . The minimum expected count is 4.40 .

Symmetric Measures

			Asymp. Std. Error $^{\text {a }}$	Approx. T ${ }^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	.052	.041	1.365	$.173^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	.050	.040	1.301	$.194^{\text {c }}$
N of Valid Cases		682			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender (1=Male; 2=Female) * Party (1=Democrat; 2=Republican; 3=Ind ependent or minor party)

Crosstab

		Party (1=Democrat; 2=Republican; 3=Independent		
or minor party)				

Crosstab

		Total	
Gender (1=Male; 2=Female)	1	Count	226
		\% of Total	42.5%
	2	Count	306
		\% of Total	57.5%
Total		Count	532
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	20.642^{a}	2	.000
Likelihood Ratio	20.787	2	.000
Linear-by-Linear	20.473	1	.000
Association			
N of Valid Cases	532		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 40.36 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T ${ }^{\mathrm{b}}$	Approx. Sig.	
Interval by Interval	Pearson's R	-.196	.042	-4.610	$.00 \mathrm{C}^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.197	.042	-4.623	$.000^{\mathrm{C}}$
N of Valid Cases		532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 =Other/No affiliation) * Party (1=Democrat; 2=Republican; 3=Independ ent or minor party)

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	31.172^{a}	8	.000
Likelihood Ratio	32.785	8	.000
Linear-by-Linear	.027	1	.870
Association			
N of Valid Cases	536		

a. 3 cells (20.0%) have expected count less than 5 . The minimum expected count is 1.09 .

Symmetric Measures

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+) * Party (1=Democrat; 2 =Republican; 3=Independent or minor party)

			Party (1=Democrat; 2=Republican; 3=Independent or minor party)		
			1	2	3
Age Group (1=18-29; $2=30-39 ; 3=40-49 ; 4=50+$)	1	Count	20	8	8
		\% of Total	3.7\%	1.5\%	1.5\%
	2	Count	32	27	23
		\% of Total	5.9\%	5.0\%	4.2\%
	3	Count	62	46	28
		\% of Total	11.4\%	8.5\%	5.2\%
	4	Count	119	130	40
		\% of Total	21.9\%	23.9\%	7.4\%
Total		Count	233	211	99
		\% of Total	42.9\%	38.9\%	18.2\%

Crosstab

Age Group (1=18-29; $2=30-39 ; 3=40-49 ; ~ 4=50+)$	1	Count	36
		\% of Total	6.6%
	2	Count	82
		\% of Total	15.1%
	3	Count	136
		\% of Total	25.0%
	4	Count	289
		\% of Total	53.2%
Total		Count	543
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	17.162^{a}	6	.009
Likelihood Ratio	17.097	6	.009
Linear-by-Linear	.606	1	.436
Association			
N of Valid Cases	543		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 6.56 .

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	-. 033	. 045	-. 778	. $437^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	-. 023	. 044	-. 543	. $587{ }^{\text {c }}$
N of Valid Cases	543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Party (1=Democrat; 2=R

 epublican; 3=Independent or minor party)Crosstab

			Party (1=Democrat; 2=Republican; 3=Independent or minor party)		
			1	2	3
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	22	14	12
		\% of Total	4.0\%	2.6\%	2.2\%
	2	Count	202	187	76
		\% of Total	37.1\%	34.3\%	13.9\%
	3	Count	10	11	11
		\% of Total	1.8\%	2.0\%	2.0\%
Total		Count	234	212	99
		\% of Total	42.9\%	38.9\%	18.2\%

Crosstab

			Total
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	48
		\% of Total	8.8\%
	2	Count	465
		\% of Total	85.3\%
	3	Count	32
		\% of Total	5.9\%
Total		Count	545
		\% of Total	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	9.396^{a}	4	.052
Likelihood Ratio	8.545	4	.074
Linear-by-Linear	1.131	1	.288
Association			
N of Valid Cases	545		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 5.81 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.	
Interval by Interval	Pearson's R	.046	.048	1.063	$.288^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.046	.047	1.083	$.279^{\mathrm{C}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Pa rty (1=Democrat; 2=Republican; 3=Independent or minor party)

Crosstab

Crosstab

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	421
		\% of Total	76.1%
	2	Count	54
		\% of Total	9.8%
	3	Count	13
		\% of Total	2.4%
	4	Count	34
		\% of Total	6.1%
		Count	31
		\% of Total	5.6%
Total		Count	553
			\% of Total
		100.0%	

Chi-Square Tests

	Value	df	Asymp. Sig. $(2-$ sided $)$
Pearson Chi-Square	38.297^{a}	8	.000
Likelihood Ratio	39.798	8	.000
Linear-by-Linear	.134	1	.714
Association			
N of Valid Cases	553		

a. 1 cells (6.7%) have expected count less than 5 . The minimum expected count is 2.33 .

Symmetric Measures

		Value	Asymp. Std. Error $^{\text {a }}$	Approx. T ${ }^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.016	.047	.366	$.714^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.060	.047	-1.412	$.159^{\mathrm{C}}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Party (1=Democrat; 2=Republican; 3=Independent or minor party)

Crosstab

Crosstab

			Total
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count \% of Total	$\begin{array}{r} 200 \\ 35.0 \% \end{array}$
	2	Count \% of Total	$\begin{array}{r} 216 \\ 37.8 \% \end{array}$
	3	Count \% of Total	$\begin{array}{r} 156 \\ 27.3 \% \end{array}$
Total		Count	572
		\% of Total	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	210.406^{a}	4	.000
Likelihood Ratio	236.829	4	.000
Linear-by-Linear	28.115	1	.000
Association			
N of Valid Cases	572		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 28.36 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	-. 222	. 039	-5.433	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 267	. 040	-6.606	. $000{ }^{\text {c }}$
N of Valid Cases		572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Party (1=De mocrat; 2=Republican; 3=Independent or minor party)

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	233.167^{a}	4	.000
Likelihood Ratio	243.655	4	.000
Linear-by-Linear	5.005	1	.025
Association			
N of Valid Cases	582		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 16.80 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	${\text { Approx. } \mathrm{T}^{\mathrm{b}}}^{\text {Value }}$	Approx. Sig.	
Interval by Interval	Pearson's R	-.093	.042	-2.245	$.025^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.174	.044	-4.260	$.000^{\mathrm{C}}$
N of Valid Cases		582			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * Party (1 =Democrat; 2=Republican; 3=Independent or minor party)

Crosstab

			Party (1=Democrat; 2=Republican; 3=Independent or minor party)		
			1	2	3
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure)	1	Count	215	17	42
		\% of Total	36.1\%	2.9\%	7.1\%
	2	Count	25	206	51
		\% of Total	4.2\%	34.6\%	8.6\%
	3	Count	16	9	14
		\% of Total	2.7\%	1.5\%	2.4\%
Total		Count	256	232	107
		\% of Total	43.0\%	39.0\%	18.0\%

Crosstab

		Total	
President (1=Obama- Clinton; 2=Romney-Ryan; 3=Not sure)	1	Count	274
		\% of Total	46.1%
	2	Count	282
		\% of Total	47.4%
	3	Count	39
		\% of Total	6.6%
Total		Count	595
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	326.515^{a}	4	.000
Likelihood Ratio	371.107	4	.000
Linear-by-Linear	104.185	1	.000
Association			
N of Valid Cases	595		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 7.01 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 419	. 043	11.231	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 494	. 042	13.829	$.000^{\text {c }}$
N of Valid Cases		595			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * Party (1= Democrat; 2=Republican; 3=Independent or minor party)

Crosstab

			Party (1=Democrat; 2=Republican; 3=Independent or minor party)		
			1	2	3
President (1=Obama- Biden; 2=Romney-Ryan; $3=\text { Not sure) }$	1	Count	220	14	41
		\% of Total	35.9\%	2.3\%	6.7\%
	2	Count	33	214	53
		\% of Total	5.4\%	35.0\%	8.7\%
	3	Count	12	10	15
		\% of Total	2.0\%	1.6\%	2.5\%
Total		Count	265	238	109
		\% of Total	43.3\%	38.9\%	17.8\%

Crosstab

		Total	
President (1=Obama- Biden; 2=Romney-Ryan; 3= Not sure)	1	Count	275
		\% of Total	44.9%
	2	Count	300
		\% of Total	49.0%
	3	Count	37
		\% of Total	6.0%
Total		Count	612
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	334.188^{a}	4	.000
Likelihood Ratio	377.399	4	.000
Linear-by-Linear	122.638	1	.000
Association			
N of Valid Cases	612		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 6.59 .

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	. 448	. 041	12.377	. $000{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	. 516	. 040	14.897	. $000{ }^{\text {c }}$
N of Valid Cases	612			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Party (1=Democrat; 2=Republican; 3=Independent or minor party)

Crosstab

Crosstab

		Total	
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	292
		\% of Total	44.6%
	2	Count	305
		\% of Total	46.6%
	3	Count	19
		\% of Total	2.9%
	4	Count	39
		\% of Total	6.0%
Total		Count	655
		\% of Total	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	366.633^{a}	6	.000
Likelihood Ratio	400.060	6	.000
Linear-by-Linear	107.811	1	.000
Association			
N of Valid Cases	655		

a. 1 cells (8.3%) have expected count less than 5 . The minimum expected count is 3.45 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 406	. 041	11.353	. $000{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 517	. 038	15.437	. $000{ }^{\text {c }}$
N of Valid Cases		655			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Party (1=D emocrat; 2=Republican; 3=Independent or minor party)

Crosstab

			Party (1=Democrat; 2=Republican; 3=Independent or minor party)		
			1	2	3
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	240	18	43
		\% of Total	36.0\%	2.7\%	6.4\%
	2	Count	35	231	56
		\% of Total	5.2\%	34.6\%	8.4\%
	3	Count	12	9	23
		\% of Total	1.8\%	1.3\%	3.4\%
Total		Count	287	258	122
		\% of Total	43.0\%	38.7\%	18.3\%

	Crosstab		
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	301
		\% of Total	45.1%
	2	Count	322
		\% of Total	48.3%
Total		Count	44
		Count Total	6.6%

Chi-Square Tests

	Value	df	Asymp. Sig. $(2-$ sided $)$
Pearson Chi-Square	382.709^{a}		4
Likelihood Ratio	416.925	4	.000
Linear-by-Linear	153.390		1

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 8.05 .

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	. 480	. 039	14.106	. $000{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	. 537	. 037	16.413	. $000{ }^{\text {c }}$
N of Valid Cases	667			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

CROSSTABS

/TABLES=Areyouregisteredtovote1yes2no Gender1Male2Female ReligiousAffiliati on1Catholic2Protestant3Jewish4Muslim50therNoaf AgeGroup118292303934049450 His panicorLatino1Yes2No3Unsure Race1White2AfricanAmerican3Asian4Other5Refuse RickScottsjobperformance1Approve2Disapprove3Unsure U.S.Senate1RepublicanConni eMack2BillNelson President10bamaClinton2RomneyRyan3Notsure President10bamaBid en2RomneyRyan3Notsure President1Obama2Romney3GaryJohnson4NotSure

Presidentialvote10bama2Romney30therUnsure Party1Democrat2Republican3Independe ntorminorparty BY Howlikelyareyoutovoteinthisyearspresidentialelections1likel
y2som
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ CORR
/CELLS=COUNT TOTAL
/COUNT ROUND CELL.

Crosstabs

[DataSet1]

Warnings

$$
\begin{aligned}
& \text { No measures of association are computed for the } \\
& \text { crosstabulation of Are you registered to vote (1=yes; } 2=\text { no })^{*} \\
& \text { How likely are you to vote in this year's presidential elections } \\
& \text { (1=likely; } 2=\text { somewhat likely; } 3=\text { not likely). At least one variable } \\
& \text { in each } 2 \text {-way table upon which measures of association are } \\
& \text { computed is a constant. }
\end{aligned}
$$

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Are you registered to vote (1=yes; 2=no) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	746	85.2\%	130	14.8\%	876	100.0\%
Gender (1=Male; 2=Female) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	532	60.7\%	344	39.3\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	536	61.2\%	340	38.8\%	876	100.0\%
Age Group (1=18-29; $2=30-39$; 3=40-49; 4=50+) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	543	62.0\%	333	38.0\%	876	100.0\%
Hispanic or Latino ($1=$ Yes; 2=No; 3=Unsure) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	545	62.2\%	331	37.8\%	876	100.0\%
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	553	63.1\%	323	36.9\%	876	100.0\%
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	572	65.3\%	304	34.7\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	582	66.4\%	294	33.6\%	876	100.0\%
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	595	67.9\%	281	32.1\%	876	100.0\%
President (1=Obama- Biden; 2=Romney-Ryan; $3=$ Not sure) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	612	69.9\%	264	30.1\%	876	100.0\%
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	655	74.8\%	221	25.2\%	876	100.0\%
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	667	76.1\%	209	23.9\%	876	100.0\%
Party (1=Democrat; 2=Republican; 3=Independent or minor party) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	682	77.9\%	194	22.1\%	876	100.0\%

Are you registered to vote (1=yes; 2=no) * How likely are you to vote i n this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)

Crosstab

			How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)		
			1	2	3
Are you registered to vote (1=yes; 2=no)	1	Count	701	27	18
		\% of Total	94.0\%	3.6\%	2.4\%
Total		Count	701	27	18
		\% of Total	94.0\%	3.6\%	2.4\%

Crosstab

Are you registered to vote $(1=y e s ; ~ 2=n o)$	1	Count \% of Total	746 100.0%
Total		Count	746
		\% of Total	100.0%

Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot \cdot$
N of Valid Cases	746

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval \quad Pearson's R	\cdot
N of Valid Cases	746

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Gender (1=Male; 2=Female) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)

Crosstab

			How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)		Total
			1	2	
Gender (1=Male; 2=Female)	1	Count	223	3	226
		\% of Total	41.9\%	0.6\%	42.5\%
	2	Count	297	9	306
		\% of Total	55.8\%	1.7\%	57.5\%
Total		Count	520	12	532
		\% of Total	97.7\%	2.3\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	1.535^{a}	1	.215		
Continuity Correction $^{\text {b }}$.891	1	.345		
Likelihood Ratio	1.630	1	.202		
Fisher's Exact Test				.252	.173
Linear-by-Linear	1.533	1	.216		
Association					
N of Valid Cases	532				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 5.10.
b. Computed only for a 2×2 table

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	. 054	. 039	1.239	. $216{ }^{\text {c }}$
Ordinal by Ordinal Spearman Correlation	. 054	. 039	1.239	. $216{ }^{\text {c }}$
N of Valid Cases	532			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 $=$ Other/No affiliation) * How likely are you to vote in this year's preside ntial elections (1=likely; 2=somewhat likely; 3=not likely)

Crosstab

			How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)		Total
			1	2	
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	1	Count \% of Total	$\begin{array}{r} 136 \\ 25.4 \% \end{array}$	7 1.3%	$\begin{array}{r} 143 \\ 26.7 \% \end{array}$
	2	Count \% of Total	$\begin{array}{r} 245 \\ 45.7 \% \end{array}$	2	247 46.1%
	3	Count \% of Total	$\begin{array}{r} 34 \\ 6.3 \% \end{array}$	1 0.2%	35 6.5%
	4	Count \% of Total	6 1.1%	0 0.0%	6 1.1%
	5	Count \% of Total	$\begin{array}{r} 102 \\ 19.0 \% \end{array}$	3 0.6%	105 19.6%
Total		Count \% of Total	$\begin{array}{r} 523 \\ 97.6 \% \end{array}$	13 2.4%	$\begin{array}{r} 536 \\ 100.0 \% \end{array}$

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.670^{a}	4	.154
Likelihood Ratio	6.916	4	.140
Linear-by-Linear	.213	1	.644
Association			
N of Valid Cases	536		

a. 4 cells (40.0%) have expected count less than 5 . The minimum expected count is .15 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.	
Interval by Interval	Pearson's R	-.020	.050	-.461	$.645^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	-.050	.053	-1.148	$.251^{\mathrm{c}}$
N of Valid Cases		536			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+) * How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)

Crosstab

			How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)		Total
			1	2	
$\begin{aligned} & \text { Age Group (1=18-29; } \\ & 2=30-39 ; 3=40-49 ; 4=50+) \end{aligned}$	1	Count	35	1	36
		\% of Total	6.4\%	0.2\%	6.6\%
	2	Count	80	2	82
		\% of Total	14.7\%	0.4\%	15.1\%
	3	Count	134	2	136
		\% of Total	24.7\%	0.4\%	25.0\%
	4	Count	280	9	289
		\% of Total	51.6\%	1.7\%	53.2\%
Total		Count	529	14	543
		\% of Total	97.4\%	2.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	1.007^{a}	3	.800
Likelihood Ratio	1.106	3	.776
Linear-by-Linear	.191	1	.662
Association			
N of Valid Cases	543		

a. 3 cells (37.5%) have expected count less than 5 . The minimum expected count is .93.

Symmetric Measures

		Value	Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
Interval by Interval	Pearson's R	.019	.044	.436	$.663^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.027	.044	.624	$.533^{\mathrm{c}}$
N of Valid Cases		543			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * How likely are you to vo te in this year's presidential elections (1=likely; 2=somewhat likely; 3 =not likely)

Crosstab

			How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)		Total
			1	2	
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	47	1	48
		\% of Total	8.6\%	0.2\%	8.8\%
	2	Count	456	9	465
		\% of Total	83.7\%	1.7\%	85.3\%
	3	Count	28	4	32
		\% of Total	5.1\%	0.7\%	5.9\%
Total		Count	531	14	545
		\% of Total	97.4\%	2.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	13.401^{a}	2	.001
Likelihood Ratio	7.500	2	.024
Linear-by-Linear	5.835	1	.016
Association			
N of Valid Cases	545		

a. 2 cells (33.3\%) have expected count less than 5 . The minimum expected count is .82 .

Symmetric Measures

			Asymp. Std. Error $^{\mathrm{a}}$	Approx. T ${ }^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.104	.063	2.426	$.016^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.102	.062	2.386	$.017^{\mathrm{C}}$
N of Valid Cases		545			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * H ow likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	8.573^{a}	4	.073
Likelihood Ratio	7.590	4	.108
Linear-by-Linear	.278	1	.598
Association			
N of Valid Cases	553		

a. 4 cells (40.0%) have expected count less than 5 . The minimum expected count is .33 .

Symmetric Measures

		Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.	
Interval by Interval	Pearson's R	.022	.038	.527	$.598^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.059	.046	1.397	$.163^{\mathrm{C}}$
N of Valid Cases		553			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * How likely are you to vote in this year's presidential elections (1=likel y; 2=somewhat likely; 3=not likely)

Crosstab

			How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)		Total
			1	2	
```Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?```	1	Count	199	1	200
		\% of Total	34.8\%	0.2\%	35.0\%
	2	Count	210	6	216
		\% of Total	36.7\%	1.0\%	37.8\%
	3	Count	148	8	156
		\% of Total	25.9\%	1.4\%	27.3\%
Total		Count	557	15	572
		\% of Total	97.4\%	2.6\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$7.384^{\mathrm{a}}$	2	.025
Likelihood Ratio	8.301	2	.016
Linear-by-Linear	7.371	1	.007
Association			
N of Valid Cases	572		

a. 1 cells $(16.7 \%)$ have expected count less than 5 . The minimum expected count is 4.09 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 114	. 036	2.730	. $007{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 114	. 035	2.728	. $007{ }^{\text {c }}$
$N$ of Valid Cases		572			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * How likely ar e you to vote in this year's presidential elections (1=likely; 2=somewh at likely; 3=not likely)

## Crosstab

			How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)		Total
			1	2	
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	218	2	220
		\% of Total	37.5\%	0.3\%	37.8\%
	2	Count	263	5	268
		\% of Total	45.2\%	0.9\%	46.0\%
	3	Count	85	9	94
		\% of Total	14.6\%	1.5\%	16.2\%
Total		Count	566	16	582
		\% of Total	97.3\%	2.7\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$19.947^{\mathrm{a}}$	2	.000
Likelihood Ratio	14.716	2	.001
Linear-by-Linear	14.259	1	.000
Association			
N of Valid Cases	582		

a. 1 cells (16.7\%) have expected count less than 5 . The minimum expected count is 2.58 .

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.157	.045	3.820	$.00 \mathrm{C}^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.146	.042	3.562	$.000^{\mathrm{C}}$
N of Valid Cases		582			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * How like ly are you to vote in this year's presidential elections (1=likely; 2=som ewhat likely; 3=not likely)

## Crosstab

			How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)		Total
			1	2	
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure)	1	Count	265	9	274
		\% of Total	44.5\%	1.5\%	46.1\%
	2	Count	278	4	282
		\% of Total	46.7\%	0.7\%	47.4\%
	3	Count	35	4	39
		\% of Total	5.9\%	0.7\%	6.6\%
Total		Count	578	17	595
		\% of Total	97.1\%	2.9\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$9.977^{\mathrm{a}}$	2	.007
Likelihood Ratio	7.423	2	.024
Linear-by-Linear	.480	1	.488
Association			
N of Valid Cases	595		

a. 1 cells (16.7\%) have expected count less than 5 . The minimum expected count is 1.11.

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.028	.055	.693	$.489^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	.009	.050	.220	$.826^{\text {c }}$
N of Valid Cases		595			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * How likel y are you to vote in this year's presidential elections (1=likely; 2=som ewhat likely; 3=not likely)

## Crosstab

			How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)		Total
			1	2	
President (1=Obama-   Biden; 2=Romney-Ryan; $3=\text { Not sure) }$	1	Count	266	9	275
		\% of Total	43.5\%	1.5\%	44.9\%
	2	Count	293	7	300
		\% of Total	47.9\%	1.1\%	49.0\%
	3	Count	34	3	37
		\% of Total	5.6\%	0.5\%	6.0\%
Total		Count	593	19	612
		\% of Total	96.9\%	3.1\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$3.698^{\mathrm{a}}$	2	.157
Likelihood Ratio	2.828	2	.243
Linear-by-Linear	.292	1	.589
Association	612		
N of Valid Cases			

a. 1 cells (16.7\%) have expected count less than 5 . The minimum expected count is 1.15.

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.022	.049	.540	$.590^{\mathrm{c}}$
Ordinal by Ordinal	Spearman Correlation	.011	.046	.265	$.791^{\mathrm{c}}$
N of Valid Cases		612			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * How likely are you to vote in this year's presidential elections (1=likely; 2= somewhat likely; 3=not likely)

## Crosstab

			How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)		Total
			1	2	
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	281	11	292
		\% of Total	42.9\%	1.7\%	44.6\%
	2	Count	299	6	305
		\% of Total	45.6\%	0.9\%	46.6\%
	3	Count	18	1	19
		\% of Total	2.7\%	0.2\%	2.9\%
	4	Count	35	4	39
		\% of Total	5.3\%	0.6\%	6.0\%
Total		Count	633	22	655
		\% of Total	96.6\%	3.4\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$7.898^{\mathrm{a}}$	3	.048
Likelihood Ratio	6.203	3	.102
Linear-by-Linear	1.557	1	.212
Association			
N of Valid Cases	655		

a. 2 cells ( $25.0 \%$ ) have expected count less than 5 . The minimum expected count is 64 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval	Pearson's R	. 049	. 055	1.248	. $212{ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 011	. 046	. 275	$.783{ }^{\text {c }}$
$N$ of Valid Cases		655			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * How likely are you to vote in this year's presidential elections (1=likely; 2=some what likely; 3=not likely)

## Crosstab

			How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)		Total
			1	2	
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	290	11	301
		\% of Total	43.5\%	1.6\%	45.1\%
	2	Count	316	6	322
		\% of Total	47.4\%	0.9\%	48.3\%
	3	Count	38	6	44
		\% of Total	5.7\%	0.9\%	6.6\%
Total		Count	644	23	667
		\% of Total	96.6\%	3.4\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$16.185^{\mathrm{a}}$	2	.000
Likelihood Ratio	10.965	2	.004
Linear-by-Linear	1.819	1	.177
Association			
N of Valid Cases	667		

a. 1 cells $(16.7 \%)$ have expected count less than 5 . The minimum expected count is 1.52 .

Symmetric Measures

	Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Interval by Interval Pearson's R	. 052	. 053	1.349	. $178{ }^{\text {C }}$
Ordinal by Ordinal Spearman Correlation	. 030	. 048	. 774	$.439{ }^{\text {c }}$
N of Valid Cases	667			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## Party (1=Democrat; 2=Republican; 3=Independent or minor party) * H ow likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)

## Crosstab

			How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)		Total
			1	2	
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	284	8	292
		\% of Total	41.6\%	1.2\%	42.8\%
	2	Count	256	9	265
		\% of Total	37.5\%	1.3\%	38.9\%
	3	Count	118	7	125
		\% of Total	17.3\%	1.0\%	18.3\%
Total		Count	658	24	682
		\% of Total	96.5\%	3.5\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig.   (2-sided)
Pearson Chi-Square	$2.128^{\mathrm{a}}$	2	.345
Likelihood Ratio	1.934	2	.380
Linear-by-Linear	1.860	1	.173
Association			
N of Valid Cases	682		

a. 1 cells $(16.7 \%)$ have expected count less than 5 . The minimum expected count is 4.40 .

Symmetric Measures

			Asymp. Std.   Error $^{\mathrm{a}}$	Approx. $\mathrm{T}^{\mathrm{b}}$	Approx. Sig.
Interval by Interval	Pearson's R	.052	.041	1.365	$.173^{\mathrm{C}}$
Ordinal by Ordinal	Spearman Correlation	.050	.040	1.301	$.194^{\mathrm{C}}$
N of Valid Cases		682			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

## CROSSTABS

/TABLES=Gender1Male2Female ReligiousAffiliation1Catholic2Protestant3Jewish4 Muslim5OtherNoaf AgeGroup118292303934049450 HispanicorLatino1Yes2No3Unsure Ra ce1White2AfricanAmerican3Asian40ther5Refuse RickScottsjobperformance1Approve2 Disapprove3Unsure
U.S.Senate1RepublicanConnieMack2BillNelson President10bamaClinton2RomneyRyan3 Notsure President10bamaBiden2RomneyRyan3Notsure President10bama2Romney3GaryJo hnson4NotSure Presidentialvote10bama2Romney30therUnsure Party1Democrat2Republican3Independentorminorparty Howlikelyareyoutovoteinthis yearspresidentialelections1likely2som BY Areyouregisteredtovote1yes2no
/FORMAT=AVALUE TABLES
/STATISTICS=CHISQ CORR
/CELLS=COUNT TOTAL
/COUNT ROUND CELL.

## Crosstabs

[DataSet1]

## Warnings

No measures of association are computed for the
crosstabulation of Gender (1=Male; 2=Female) * Are you
registered to vote (1=yes; 2=no). At least one variable in each 2-
way table upon which measures of association are computed is
a constant.
No measures of association are computed for the
crosstabulation of Religious Affiliation (1=Catholic; 2=Protestant;
3=Jewish; 4=Muslim; 5=Other/No affiliation) * Are you registered
to vote (1=yes; 2=no). At least one variable in each 2-way table
upon which measures of association are computed is a
constant.
No measures of association are computed for the
crosstabulation of Age Group (1=18-29; 2=30-39; 3=40-49;
4=50+) * Are you registered to vote (1=yes; 2=no). At least one
variable in each 2-way table upon which measures of
association are computed is a constant.
No measures of association are computed for the
crosstabulation of Hispanic or Latino (1=Yes; 2=No; 3=Unsure) *
Are you registered to vote (1=yes; 2=no). At least one variable
in each 2-way table upon which measures of association are
computed is a constant.
No measures of association are computed for the
crosstabulation of Race (1=White; 2=African American;
3=Asian; 4=Other; 5=Refuse) * Are you registered to vote
(1=yes; 2=no). At least one variable in each 2-way table upon
which measures of association are computed is a constant.
No measures of association are computed for the
crosstabulation of Rick Scott's job performance (1=Approve;
2=Disapprove; 3=Unsure)? * Are you registered to vote (1=yes;
2=no). At least one variable in each 2-way table upon which
measures of association are computed is a constant.
No measures of association are computed for the
crosstabulation of U.S. Senate (1=Republican Connie Mack;
2=Bill Nelson) * Are you registered to vote (1=yes; 2=no). At
least one variable in each 2-way table upon which measures of
association are computed is a constant.
No measures of association are computed for the
crosstabulation of President (1=Obama-Clinton; 2=Romney-
Ryan; 3=Not sure) * Are you registered to vote (1=yes; 2=no). At
least one variable in each 2-way table upon which measures of
association are computed is a constant.
No measures of association are computed for the
crosstabulation of President (1=Obama-Biden; $2=R o m n e y-~$
Ryan; 3= Not sure) * Are you registered to vote (1=yes; 2=no).
At least one variable in each 2-way table upon which measures
of association are computed is a constant.

## Warnings

> No measures of association are computed for the crosstabulation of President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Are you registered to vote (1=yes;
> $2=n o$ ). At least one variable in each 2-way table upon which measures of association are computed is a constant.
> No measures of association are computed for the crosstabulation of Presidential vote (1=Obama; 2=Romney; $3=$ Other/Unsure) * Are you registered to vote (1=yes; 2=no). At least one variable in each 2-way table upon which measures of association are computed is a constant.
> No measures of association are computed for the crosstabulation of Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Are you registered to vote (1=yes; 2=no). At least one variable in each 2-way table upon which measures of association are computed is a constant.
> No measures of association are computed for the crosstabulation of How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)
> * Are you registered to vote (1=yes; 2=no). At least one variable in each 2-way table upon which measures of association are computed is a constant.

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
$\begin{aligned} & \text { Gender (1=Male; } \\ & 2=\text { Female) * Are you } \\ & \text { registered to vote (1=yes; } \\ & 2=\text { no) } \end{aligned}$	532	60.7\%	344	39.3\%	876	100.0\%
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation) * Are you registered to vote (1=yes; 2=no)	536	61.2\%	340	38.8\%	876	100.0\%
Age Group (1=18-29; $2=30-39 ; 3=40-49 ; 4=50+)$   * Are you registered to vote (1=yes; 2=no)	543	62.0\%	333	38.0\%	876	100.0\%
Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Are you registered to vote (1=yes; 2=no)	545	62.2\%	331	37.8\%	876	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Race (1=White; 2=African   American; 3=Asian;   4=Other; 5=Refuse) * Are   you registered to vote   (1=yes; 2=no)	553	63.1\%	323	36.9\%	876	100.0\%
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Are you registered to vote (1=yes; 2=no)	572	65.3\%	304	34.7\%	876	100.0\%
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Are you registered to vote (1=yes; 2=no)	582	66.4\%	294	33.6\%	876	100.0\%
President (1=ObamaClinton; 2=Romney-Ryan; 3=Not sure) * Are you registered to vote (1=yes; 2=no)	595	67.9\%	281	32.1\%	876	100.0\%
President (1=ObamaBiden; 2=Romney-Ryan; 3= Not sure) * Are you registered to vote (1=yes; 2=no)	612	69.9\%	264	30.1\%	876	100.0\%
President (1=Obama;   2=Romney; 3=Gary   Johnson; 4=Not Sure) *   Are you registered to vote   (1=yes; 2=no)	655	74.8\%	221	25.2\%	876	100.0\%
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Are you registered to vote (1=yes; 2=no)	667	76.1\%	209	23.9\%	876	100.0\%
Party (1=Democrat;   2=Republican;   3=Independent or minor party) * Are you registered to vote (1=yes; 2=no)	682	77.9\%	194	22.1\%	876	100.0\%
How likely are you to vote in this year's presidential elections (1=likely;   2=somewhat likely; 3=not likely) * Are you registered to vote (1=yes; 2=no)	746	85.2\%	130	14.8\%	876	100.0\%

## Gender (1=Male; 2=Female) * Are you registered to vote (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
Gender (1=Male; 2=Female)	1	Count	226	226
		\% of Total	42.5\%	42.5\%
	2	Count	306	306
		\% of Total	57.5\%	57.5\%
Total		Count	532	532
		\% of Total	100.0\%	100.0\%

Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot{ }^{a}$
N of Valid Cases	532

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value	
Interval by Interval	Pearson's R	$\cdot$
N of Valid Cases		532

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

## Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5 =Other/No affiliation) * Are you registered to vote (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
Religious Affiliation (1=Catholic; 2=Protestant; 3=Jewish; 4=Muslim; 5=Other/No affiliation)	1	Count   \% of Total	$\begin{array}{r} 143 \\ 26.7 \% \end{array}$	$\begin{array}{r} 143 \\ 26.7 \% \end{array}$
	2	Count   \% of Total	$\begin{array}{r} 247 \\ 46.1 \% \end{array}$	$\begin{array}{r} 247 \\ 46.1 \% \end{array}$
	3	Count	35	35
		\% of Total	6.5\%	6.5\%
	4	Count	6	6
		\% of Total	1.1\%	1.1\%
	5	Count	105	105
		\% of Total	19.6\%	19.6\%
Total		Count	536	536
		\% of Total	100.0\%	100.0\%

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot{ }^{2}$
N of Valid Cases	536

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval $\quad$ Pearson's R	$\cdot{ }^{a}$
N of Valid Cases	536

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

## Age Group (1=18-29; 2=30-39; 3=40-49; 4=50+) * Are you registered to vote (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
Age Group (1=18-29;$2=30-39 ; 3=40-49 ; 4=50+)$	1	Count	36	36
		\% of Total	6.6\%	6.6\%
	2	Count	82	82
		\% of Total	15.1\%	15.1\%
	3	Count	136	136
		\% of Total	25.0\%	25.0\%
	4	Count	289	289
		\% of Total	53.2\%	53.2\%
Total		Count	543	543
		\% of Total	100.0\%	100.0\%

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot a$
N of Valid Cases	543

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval Pearson's R   N of Valid Cases ${ }^{\circ}$	543

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

## Hispanic or Latino (1=Yes; 2=No; 3=Unsure) * Are you registered to vo te (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
Hispanic or Latino (1=Yes; 2=No; 3=Unsure)	1	Count	48	48
		\% of Total	8.8\%	8.8\%
	2	Count	465	465
		\% of Total	85.3\%	85.3\%
	3	Count	32	32
		\% of Total	5.9\%	5.9\%
Total		Count	545	545
		\% of Total	100.0\%	100.0\%

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot \cdot$
$N$ of Valid Cases	545

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value	
Interval by Interval	Pearson's R	$\cdot{ }^{\circ}$
N of Valid Cases		545

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

## Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse) * Ar e you registered to vote (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
Race (1=White; 2=African American; 3=Asian; 4=Other; 5=Refuse)	1	Count	421	421
		\% of Total	76.1\%	76.1\%
	2	Count	54	54
		\% of Total	9.8\%	9.8\%
	3	Count	13	13
		\% of Total	2.4\%	2.4\%
	4	Count	34	34
		\% of Total	6.1\%	6.1\%
	5	Count	31	31
		\% of Total	5.6\%	5.6\%
Total		Count	553	553
		\% of Total	100.0\%	100.0\%

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot{ }^{\text {a }}$
N of Valid Cases	553

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval $\quad$ Pearson's R	$\cdot{ }^{\circ}$
N of Valid Cases	553

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)? * Are you registered to vote (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
Rick Scott's job performance (1=Approve; 2=Disapprove; 3=Unsure)?	1	Count	200	200
		\% of Total	35.0\%	35.0\%
	2	Count	216	216
		\% of Total	37.8\%	37.8\%
	3	Count	156	156
		\% of Total	27.3\%	27.3\%
Total		Count	572	572
		\% of Total	100.0\%	100.0\%

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot \cdot$
$N$ of Valid Cases	572

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value	
Interval by Interval	Pearson's R	$\cdot$
$N$ of Valid Cases		572

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

## U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson) * Are you regis tered to vote (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
U.S. Senate (1=Republican Connie Mack; 2=Bill Nelson)	1	Count	220	220
		\% of Total	37.8\%	37.8\%
	2	Count	268	268
		\% of Total	46.0\%	46.0\%
	3	Count	94	94
		\% of Total	16.2\%	16.2\%
Total		Count	582	582
		\% of Total	100.0\%	100.0\%

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot \cdot$
$N$ of Valid Cases	582

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value	
Interval by Interval	Pearson's R	$\cdot{ }^{\circ}$
N of Valid Cases		582

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

## President (1=Obama-Clinton; 2=Romney-Ryan; 3=Not sure) * Are you registered to vote (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
President (1=ObamaClinton; 2=Romney-Ryan; $3=$ Not sure)	1	Count	274	274
		\% of Total	46.1\%	46.1\%
	2	Count	282	282
		\% of Total	47.4\%	47.4\%
	3	Count	39	39
		\% of Total	6.6\%	6.6\%
Total		Count	595	595
		\% of Total	100.0\%	100.0\%

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot \cdot$
$N$ of Valid Cases	595

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

|  | Value |
| :--- | ---: | ---: |
| Interval by Interval $\quad$ Pearson's R | $\cdot{ }^{\circ}$ |
| N of Valid Cases | 595 |

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

President (1=Obama-Biden; 2=Romney-Ryan; 3= Not sure) * Are you registered to vote (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
President (1=Obama-   Biden; 2=Romney-Ryan; $3=$ Not sure)	1	Count	275	275
		\% of Total	44.9\%	44.9\%
	2	Count	300	300
		\% of Total	49.0\%	49.0\%
	3	Count	37	37
		\% of Total	6.0\%	6.0\%
Total		Count	612	612
		\% of Total	100.0\%	100.0\%

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot \cdot$
$N$ of Valid Cases	612

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value	
Interval by Interval	Pearson's R	$\cdot$
$N$ of Valid Cases		612

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

## President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure) * Are you registered to vote (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
President (1=Obama; 2=Romney; 3=Gary Johnson; 4=Not Sure)	1	Count	292	292
		\% of Total	44.6\%	44.6\%
	2	Count	305	305
		\% of Total	46.6\%	46.6\%
	3	Count	19	19
		\% of Total	2.9\%	2.9\%
	4	Count	39	39
		\% of Total	6.0\%	6.0\%
Total		Count	655	655
		\% of Total	100.0\%	100.0\%

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot a$
N of Valid Cases	655

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval $\quad$ Pearson's R	$\cdot{ }^{\text {a }}$
N of Valid Cases	655

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

## Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure) * Are you r egistered to vote (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
Presidential vote (1=Obama; 2=Romney; 3=Other/Unsure)	1	Count	301	301
		\% of Total	45.1\%	45.1\%
	2	Count	322	322
		\% of Total	48.3\%	48.3\%
	3	Count	44	44
		\% of Total	6.6\%	6.6\%
Total		Count	667	667
		\% of Total	100.0\%	100.0\%

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot$
$N$ of Valid Cases	667

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value
Interval by Interval $\quad$ Pearson's R	$\cdot{ }^{\circ}$
N of Valid Cases	667

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

## Party (1=Democrat; 2=Republican; 3=Independent or minor party) * Ar e you registered to vote (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
Party (1=Democrat; 2=Republican; 3=Independent or minor party)	1	Count	292	292
		\% of Total	42.8\%	42.8\%
	2	Count	265	265
		\% of Total	38.9\%	38.9\%
	3	Count	125	125
		\% of Total	18.3\%	18.3\%
Total		Count	682	682
		\% of Total	100.0\%	100.0\%

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot \cdot$
$N$ of Valid Cases	682

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value	
Interval by Interval $\quad$ Pearson's R	$\cdot{ }^{\circ}$	
N of Valid Cases		682

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

## How likely are you to vote in this year's presidential elections (1=likely ; 2=somewhat likely; 3=not likely) * Are you registered to vote (1=yes; 2=no)

Crosstab

			Are you registered to vote (1=yes; 2=no)	Total
			1	
How likely are you to vote in this year's presidential elections (1=likely; 2=somewhat likely; 3=not likely)	1	Count	701	701
		\% of Total	94.0\%	94.0\%
	2	Count	27	27
		\% of Total	3.6\%	3.6\%
	3	Count	18	18
		\% of Total	2.4\%	2.4\%
Total		Count	746	746
		\% of Total	100.0\%	100.0\%

## Chi-Square Tests

	Value
Pearson Chi-Square	$\cdot \cdot$
N of Valid Cases	746

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.

Symmetric Measures

	Value	
Interval by Interval	Pearson's R	$\cdot{ }^{\circ}$
$N$ of Valid Cases		746

a. No statistics are computed because Are you registered to vote (1=yes; 2=no) is a constant.


[^0]:    No measures of association are computed for the crosstabulation of Are you registered to vote (1=yes; 2=no) * U. S. Senate (1=Republican Connie Mack; 2=Bill Nelson). At least one variable in each 2-way table upon which measures of association are computed is a constant.

